Real Time Data Mining (Paperback)
暫譯: 即時資料挖掘 (平裝本)
Saed Sayad
- 出版商: Self-Help Publishers
- 出版日期: 2011-01-05
- 售價: $2,390
- 貴賓價: 9.5 折 $2,271
- 語言: 英文
- 頁數: 154
- 裝訂: Paperback
- ISBN: 0986606049
- ISBN-13: 9780986606045
-
相關分類:
Data-mining
無法訂購
買這商品的人也買了...
-
$1,558Introduction to Algorithms, 3/e (IE-Paperback)
-
$1,590$1,511 -
$299Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data (Paperback)
-
$1,620$1,539
商品描述
Data mining is about explaining the past and predicting the future by exploring and analyzing data. Data mining is a multi-disciplinary field which combines statistics, machine learning, artificial intelligence and database technology. Although data mining algorithms are widely used in extremely diverse situations, in practice, one or more major limitations almost invariably appear and significantly constrain successful data mining applications. Frequently, these problems are associated with large increases in the rate of generation of data, the quantity of data and the number of attributes (variables) to be processed: Increasingly, the data situation is now beyond the capabilities of conventional data mining methods. The term Real Time is used to describe how well a data mining algorithm can accommodate an ever increasing data load instantaneously. Upgrading conventional data mining to real time data mining is through the use of a method termed the Real Time Learning Machine or RTLM. The use of the RTLM with conventional data mining methods enables Real Time Data Mining. The future of predictive modeling belongs to real time data mining and the main motivation in authoring this book is to help you to understand the method and to implement it for your applications.
商品描述(中文翻譯)
資料探勘是透過探索和分析數據來解釋過去和預測未來。資料探勘是一個多學科的領域,結合了統計學、機器學習、人工智慧和資料庫技術。
儘管資料探勘演算法在極其多樣的情況下被廣泛使用,但在實際應用中,幾乎總會出現一個或多個主要限制,這些限制顯著約束了成功的資料探勘應用。這些問題通常與數據生成速率的大幅增加、數據量的增長以及需要處理的屬性(變數)數量有關:目前的數據情況已超出傳統資料探勘方法的能力範圍。
「即時」這個術語用來描述資料探勘演算法在瞬間處理不斷增加的數據負載的能力。將傳統資料探勘升級為即時資料探勘的方法稱為即時學習機器(Real Time Learning Machine,簡稱 RTLM)。使用 RTLM 與傳統資料探勘方法結合,可以實現即時資料探勘。
預測建模的未來屬於即時資料探勘,撰寫本書的主要動機是幫助您理解這種方法並將其應用於您的應用程式中。