Fourier Analysis : An Introduction (Princeton Lectures in Analysis, No. 1) (Hardcover)
暫譯: 傅立葉分析:入門(普林斯頓分析講座,第1冊)(精裝本)

Elias M. Stein, Rami Shakarchi

  • 出版商: Princeton University
  • 出版日期: 2003-04-06
  • 售價: $1,580
  • 貴賓價: 9.8$1,548
  • 語言: 英文
  • 頁數: 328
  • 裝訂: Hardcover
  • ISBN: 069111384X
  • ISBN-13: 9780691113845
  • 相關分類: 物理學 Physics
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions.

The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression.

In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest.

The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

商品描述(中文翻譯)

這第一卷是對該主題的三部分介紹,旨在為具有初步數學分析知識的學生提供動機,以探索塑造傅立葉分析的思想。它始於傅立葉在十九世紀初研究物理科學問題時所得到的簡單信念——任意函數可以寫成最基本三角函數的無限和。

第一部分以傅立葉級數的收斂性和可加性概念來實現這一思想,同時強調應用,例如等周不等式和均勻分佈。第二部分則處理傅立葉變換及其在經典偏微分方程和拉東變換中的應用;對該主題的清晰介紹旨在避免技術上的困難。本書以有限阿貝爾群的傅立葉理論作結,並將其應用於算術級數中的質數。

在組織其闡述時,作者仔細平衡了對關鍵概念洞察的強調與提供嚴謹分析的技術基礎的需求。數學、物理、工程及其他科學的學生將會發現本卷所涵蓋的理論和應用具有真正的興趣。

《普林斯頓分析講座》代表了一項持續的努力,旨在介紹數學分析的核心領域,同時也展示它們之間的有機統一。在計劃中的四卷中,第一卷《傅立葉分析》通過大量的例子和應用,突顯了某些分析思想對其他數學領域和各種科學的深遠影響。斯坦和沙卡爾基從介紹傅立葉級數和積分開始,深入考慮複分析、測度與積分理論、希爾伯特空間,最後探討功能分析、分佈及概率論的基本元素等進一步主題。