Fundamentals of Nonparametric Bayesian Inference (Hardcover)
暫譯: 非參數貝葉斯推斷基礎 (精裝版)
Subhashis Ghosal, Aad van der Vaart
- 出版商: Cambridge
- 出版日期: 2017-06-26
- 售價: $1,680
- 貴賓價: 9.8 折 $1,646
- 語言: 英文
- 頁數: 670
- 裝訂: Hardcover
- ISBN: 0521878268
- ISBN-13: 9780521878265
-
相關分類:
機率統計學 Probability-and-statistics
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,225A Computational Introduction to Number Theory and Algebra (Hardcover)
-
$1,850$1,813 -
$6,430$6,109 -
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback)
-
$800$632 -
$360$281 -
$450$356 -
$1,568Statistical Inference: An Integrated Approach, 2/e (Hardcover)
-
$650$507 -
$650$514 -
$450$351 -
$600$468 -
$560$442 -
$500$395 -
$1,646Introduction to Linear Regression Analysis, 6/e (Hardcover)
-
$680$537 -
$1,200$948 -
$1,674$1,590 -
$680$537 -
$1,900$1,805 -
$653概率圖模型原理與應用, 2/e
-
$780$608 -
$454計算貝葉斯統計導論
-
$600$468 -
$862機器學習中的一階與隨機優化方法
商品描述
Explosive growth in computing power has made Bayesian methods for infinite-dimensional models - Bayesian nonparametrics - a nearly universal framework for inference, finding practical use in numerous subject areas. Written by leading researchers, this authoritative text draws on theoretical advances of the past twenty years to synthesize all aspects of Bayesian nonparametrics, from prior construction to computation and large sample behavior of posteriors. Because understanding the behavior of posteriors is critical to selecting priors that work, the large sample theory is developed systematically, illustrated by various examples of model and prior combinations. Precise sufficient conditions are given, with complete proofs, that ensure desirable posterior properties and behavior. Each chapter ends with historical notes and numerous exercises to deepen and consolidate the reader's understanding, making the book valuable for both graduate students and researchers in statistics and machine learning, as well as in application areas such as econometrics and biostatistics.
商品描述(中文翻譯)
計算能力的爆炸性增長使得無限維模型的貝葉斯方法——貝葉斯非參數法,成為一個幾乎通用的推斷框架,並在許多學科領域中找到了實際應用。本書由領先的研究者撰寫,基於過去二十年的理論進展,綜合了貝葉斯非參數法的各個方面,從先驗構建到後驗的計算和大樣本行為。由於理解後驗的行為對於選擇有效的先驗至關重要,因此大樣本理論系統地發展,並通過各種模型和先驗組合的例子進行說明。提供了精確的充分條件,並附有完整的證明,以確保所需的後驗性質和行為。每章結尾都有歷史註釋和大量練習題,以加深和鞏固讀者的理解,使本書對於統計學和機器學習的研究生及研究人員,以及計量經濟學和生物統計學等應用領域的專業人士都具有價值。