Bayesian Data Analysis, 3/e (Hardcover)
暫譯: 貝葉斯數據分析(第三版,精裝本)

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin

買這商品的人也買了...

商品描述

Winner of the 2016 De Groot Prize from the International Society for Bayesian Analysis

Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors―all leaders in the statistics community―introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice.

New to the Third Edition

 

 

  • Four new chapters on nonparametric modeling
  • Coverage of weakly informative priors and boundary-avoiding priors
  • Updated discussion of cross-validation and predictive information criteria
  • Improved convergence monitoring and effective sample size calculations for iterative simulation
  • Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation
  • New and revised software code

 

The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

商品描述(中文翻譯)

2016年國際貝葉斯分析學會德格魯特獎得主

本書已進入第三版,廣泛被認為是貝葉斯方法的領導性教材,以其易於理解和實用的數據分析及解決研究問題的方法而受到讚譽。貝葉斯數據分析,第三版 繼續採用應用的方式來分析,使用最新的貝葉斯方法。作者們——統計界的領導者——從數據分析的角度介紹基本概念,然後再呈現進階方法。在整本書中,許多來自實際應用和研究的範例強調了貝葉斯推斷在實踐中的應用。

第三版的新內容


  • 四個關於非參數建模的新章節

  • 涵蓋弱信息先驗和避免邊界的先驗

  • 更新的交叉驗證和預測信息準則的討論

  • 改進的收斂監控和迭代模擬的有效樣本大小計算

  • 哈密頓蒙特卡羅、變分貝葉斯和期望傳播的介紹

  • 新的和修訂的軟體代碼

本書可以以三種不同的方式使用。對於本科生,它從基本原則開始介紹貝葉斯推斷。對於研究生,文本呈現了統計學及相關領域中貝葉斯建模和計算的有效當前方法。對於研究人員,它提供了一系列應用統計中的貝葉斯方法。額外的材料,包括範例中使用的數據集、選定練習的解答和軟體指導,均可在本書的網頁上獲得。