An Introduction to Support Vector Machines and Other Kernel-based Learning Methods
暫譯: 支持向量機及其他基於核的學習方法入門
Nello Cristianini, John Shawe-Taylor
- 出版商: Cambridge
- 出版日期: 2000-03-28
- 售價: $3,259
- 語言: 英文
- 頁數: 204
- 裝訂: Hardcover
- ISBN: 0521780195
- ISBN-13: 9780521780193
無法訂購
買這商品的人也買了...
-
$4,350$4,133 -
$350$277 -
$590$466 -
$1,090$1,068 -
$1,078Machine Learning (IE-Paperback)
-
$690$587 -
$780$616 -
$890$703 -
$1,264Introduction to Machine Learning
-
$1,078Operating System Principles, 7/e(IE) (美國版ISBN:0471694665-Operating System Concepts, 7/e) (平裝)
-
$2,390$2,271 -
$820$697 -
$480$408 -
$2,550$2,423 -
$1,098Understanding Fiber Optics, 5/e (Paperback)
-
$650$514 -
$520$442 -
$890$757 -
$780$741 -
$650$507 -
$3,500$3,325 -
$980$774 -
$750$593 -
$880$695 -
$600$480
相關主題
商品描述
Description
This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, biosequences analysis, etc., and are now established as one of the standard tools for machine learning and data mining. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications. The concepts are introduced gradually in accessible and self-contained stages, while the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software ensure that it forms an ideal starting point for further study. Equally, the book and its associated web site will guide practitioners to updated literature, new applications, and on-line software.
• Devoted to an organic treatment of Support Vector Machines
• Self-contained course-book for advanced students or introduction for practitioners, with recipes, pseudo-code and practical advice
• Contains examples, exercises, case studies and pointers to relevant literature and web-sites, where updated software is available
Table of Contents
Preface
1. The learning methodology
2. Linear learning machines
3. Kernel-induced feature spaces
4. Generalisation theory
5. Optimisation theory
6. Support vector machines
7. Implementation techniques
8. Applications of support vector machines
Appendix 1. Pseudocode for the SMO algorithm
Appendix 2. Background mathematics
Appendix 3. Glossary
Appendix 4. Notation
Bibliography
Index.
商品描述(中文翻譯)
**描述**
這是對支持向量機(Support Vector Machines, SVMs)的首次全面介紹,這是一種基於最近統計學習理論進展的新一代學習系統。SVM在文本分類、手寫字符識別、圖像分類、生物序列分析等現實應用中提供了最先進的性能,並且現在已經成為機器學習和數據挖掘的標準工具之一。學生會發現這本書既具啟發性又易於理解,而實務工作者則能順利掌握理論及其應用所需的材料。概念以可接近且自成體系的階段逐步介紹,同時呈現方式嚴謹且徹底。書中提供相關文獻和包含軟體的網站的指引,確保它成為進一步學習的理想起點。同樣,這本書及其相關網站將引導實務工作者獲取最新文獻、新應用和線上軟體。
- 專注於支持向量機的有機處理
- 為高級學生提供自成體系的課本,或為實務工作者提供入門,包含食譜、偽代碼和實用建議
- 包含範例、練習、案例研究及相關文獻和網站的指引,提供更新的軟體
**目錄**
前言
1. 學習方法論
2. 線性學習機
3. 核心誘導特徵空間
4. 泛化理論
5. 優化理論
6. 支持向量機
7. 實現技術
8. 支持向量機的應用
附錄1. SMO算法的偽代碼
附錄2. 背景數學
附錄3. 詞彙表
附錄4. 符號
參考文獻
索引