Learning Kernel Classifiers: Theory and Algorithms (Hardcover)
暫譯: 學習核分類器:理論與演算法 (精裝版)
Ralf Herbrich
- 出版商: MIT
- 出版日期: 2001-12-07
- 售價: $2,010
- 貴賓價: 9.5 折 $1,910
- 語言: 英文
- 頁數: 384
- 裝訂: Hardcover
- ISBN: 026208306X
- ISBN-13: 9780262083065
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
離散與組合數學 (Discrete and Combinatorial Mathematics, 5/e)$980$931 -
深入淺出設計模式 (Head First Design Patterns)$880$695 -
SQL 語法範例辭典$550$468 -
Java 2 JDK 5/6 教學手冊, 4/e$650$553 -
網路概論與實務:CCNA 考試認證必備用書, 5/e$560$504 -
鳥哥的 Linux 私房菜-基礎學習篇, 3/e$820$648 -
約耳趣談軟體-來自專案管理的現場實錄 (Joel on Software: And on Diverse and Occasionally Related Matters That Will Prove of Interest to Software Developers)$490$387 -
深入淺出 Android 系統原理及開發要點$450$351 -
前進 Android Market!Google Android SDK 實戰演練$850$672 -
Google Android SDK 開發範例大全, 3/e$950$751 -
jQuery 錦囊妙計 (jQuery Cookbook)$680$537 -
學徒模式-優秀軟體開發者的養成之路 (Apprenticeship Patterns: Guidance for the Aspiring Software Craftsman)$420$332 -
Embedded Linux 嵌入式系統開發實務, 2/e (Embedded Linux Primer: A Practical Real-World Approach, 2/e)$780$663 -
深入淺出程式設計-奠基於 Python 語言的編程學習指南 (Head First Programming: A Learner's Guide to Programming Using the Python Language)$680$537 -
Eclipse 完全攻略-從基礎 Java 到 PDE 外掛開發$600$468 -
鳥哥的 Linux 私房菜-伺服器架設篇, 3/e$800$632 -
Google Android 應用程式開發實戰, 3/e (適用 Android SDK 2.x/3.x)$680$537 -
Android 4.X 手機/平板電腦程式設計入門、應用到精通, 2/e (適用 Android 1.X~4.X)$520$411 -
Android 核心剖析$650$514 -
笑談軟體工程:敏捷開發法的逆襲-導入 Scrum,讓你的軟體開發人生從黑白變彩色!$550$435 -
ASP.NET MVC 4 網站開發美學$680$537 -
無瑕的程式碼 - 敏捷軟體開發技巧守則 (Clean Code: A Handbook of Agile Software Craftsmanship)$580$452 -
iOS 7 程式設計實戰-171 個快速上手的開發技巧$480$379 -
透視 C語言指標-深度探索記憶體管理核心技術 (Understanding and Using C Pointers)$480$379 -
10 天學會 Ruby on Rails:Web 2.0 網站架設速成$320$250
商品描述
Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier--a limited, but well-established and comprehensively studied model--and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library.
商品描述(中文翻譯)
在核空間中的線性分類器已成為機器學習領域的一個主要主題。核技術將線性分類器——這是一個有限但已建立且經過全面研究的模型——擴展到各種非線性模式識別任務,如自然語言處理、機器視覺和生物序列分析。本書提供了核分類器理論和算法的首個全面概述,包括最新的發展。書中首先描述了主要的算法進展:核感知器學習、核Fisher判別、支持向量機、相關向量機、高斯過程和貝葉斯點機器。接著詳細介紹了學習理論,包括VC理論和PAC-Bayesian理論、數據依賴的結構風險最小化和壓縮界限。全書強調理論與算法之間的互動:學習算法如何運作以及為什麼。書中包含許多例子、所呈現算法的完整偽代碼,以及一個廣泛的源代碼庫。
