Integral Geometry and Geometric Probability, 2/e

Luis A. Santaló

  • 出版商: Cambridge
  • 出版日期: 2004-10-28
  • 售價: $1,890
  • 貴賓價: 9.8$1,852
  • 語言: 英文
  • 頁數: 428
  • 裝訂: Paperback
  • ISBN: 0521523443
  • ISBN-13: 9780521523448
  • 下單後立即進貨 (約5~7天)

相關主題

商品描述

Description:

Now available in the Cambridge Mathematical Library, the classic work from Luis Santaló. Integral geometry originated with problems on geometrical probability and convex bodies. Its later developments, however, have proved to be useful in several fields ranging from pure mathematics (measure theory, continuous groups) to technical and applied disciplines (pattern recognition, stereology). The book is a systematic exposition of the theory and a compilation of the main results in the field. The volume can be used to complement courses on differential geometry, Lie groups or probability or differential geometry. It is ideal both as a reference and for those wishing to enter the field.

 

Table of Contents:

Part I. Integral Geometry in the Plane: 1. Convex sets in the plane; 2. Sets of points and Poisson processes in the plane; 3. Sets of lines in the plane; 4. Pairs of points and pairs of lines; 5. Sets of strips in the plane; 6. The group of motions in the plane: kinematic density; 7. Fundamental formulas of Poincaré and Blaschke; 8. Lattices of figures; Part II. General Integral Geometry: 9. Differential forms and Lie groups; 10. Density and measure in homogenous spaces; 11. The affine groups; 12. The group of motions in En; Part III. Integral Geometry in En: 13. Convex sets in En; 14. Linear subspaces, convex sets and compact manifolds; 15. The kinematic density in En; 16. Geometric and statistical applications: stereology; Part IV. Integral Geometry in Spaces of Constant Curvature: 17. Noneuclidean integral geometry; 18. Crofton’s formulas and the kinematic fundamental formula in noneuclidean spaces; 19. Integral geometry and foliated spaces: trends in integral geometry.

商品描述(中文翻譯)

描述:
現在在劍橋數學圖書館中可獲得路易斯·桑塔洛的經典著作。《積分幾何》起源於幾何概率和凸體的問題。然而,其後的發展已被證明在多個領域中都非常有用,從純數學(測度理論、連續群)到技術和應用學科(模式識別、立體學)。本書系統地闡述了該理論並彙編了該領域的主要結果。該卷可用於補充微分幾何、李群或概率或微分幾何的課程。無論作為參考書籍或是希望進入該領域的人士,都是理想的選擇。

目錄:
第一部分。平面中的積分幾何:1. 平面中的凸集;2. 平面中的點集和泊松過程;3. 平面中的直線集;4. 點對和直線對;5. 平面中的條帶集;6. 平面中的運動群:運動密度;7. 庫朗和布拉什克的基本公式;8. 圖形的格子;第二部分。一般積分幾何:9. 微分形式和李群;10. 均勻空間中的密度和測度;11. 仿射群;12. En 中的運動群;第三部分。En 中的積分幾何:13. En 中的凸集;14. 線性子空間、凸集和緊流形;15. En 中的運動密度;16. 幾何和統計應用:立體學;第四部分。常曲率空間中的積分幾何:17. 非歐幾里得積分幾何;18. 克羅夫頓公式和非歐幾里得空間中的運動基本公式;19. 積分幾何和葉狀空間:積分幾何的趨勢。