Recommender Systems: An Introduction(Hardcover)
暫譯: 推薦系統:入門指南(精裝版)

Dietmar Jannach, Markus Zanker, Alexander Felfernig, Gerhard Friedrich

買這商品的人也買了...

相關主題

商品描述

In this age of information overload, people use a variety of strategies to make choices about what to buy, how to spend their leisure time, and even whom to date. Recommender systems automate some of these strategies with the goal of providing affordable, personal, and high-quality recommendations. This book offers an overview of approaches to developing state-of-the-art recommender systems. The authors present current algorithmic approaches for generating personalized buying proposals, such as collaborative and content-based filtering, as well as more interactive and knowledge-based approaches. They also discuss how to measure the effectiveness of recommender systems and illustrate the methods with practical case studies. The final chapters cover emerging topics such as recommender systems in the social web and consumer buying behavior theory. Suitable for computer science researchers and students interested in getting an overview of the field, this book will also be useful for professionals looking for the right technology to build real-world recommender systems.

商品描述(中文翻譯)

在這個資訊過載的時代,人們使用各種策略來決定購買什麼、如何度過休閒時間,甚至是約會對象。推薦系統自動化了這些策略的一部分,目的是提供可負擔的、個人化的和高品質的推薦。

本書提供了開發最先進推薦系統的方法概述。作者介紹了當前生成個性化購買建議的算法方法,例如協同過濾(collaborative filtering)和基於內容的過濾(content-based filtering),以及更具互動性和知識基礎的方法。他們還討論了如何衡量推薦系統的有效性,並通過實際案例研究來說明這些方法。最後幾章涵蓋了新興主題,如社交網路中的推薦系統和消費者購買行為理論。

本書適合對該領域感興趣的計算機科學研究人員和學生,也將對尋找合適技術以構建現實世界推薦系統的專業人士有所幫助。