Data Privacy Games
暫譯: 數據隱私遊戲
Lei Xu, Chunxiao Jiang, Yi Qian, Yong Ren
- 出版商: Springer
- 出版日期: 2018-05-07
- 售價: $4,510
- 貴賓價: 9.5 折 $4,285
- 語言: 英文
- 頁數: 181
- 裝訂: Hardcover
- ISBN: 3319779648
- ISBN-13: 9783319779645
海外代購書籍(需單獨結帳)
相關主題
商品描述
With the growing popularity of “big data”, the potential value of personal data has attracted more and more attention. Applications built on personal data can create tremendous social and economic benefits. Meanwhile, they bring serious threats to individual privacy. The extensive collection, analysis and transaction of personal data make it difficult for an individual to keep the privacy safe. People now show more concerns about privacy than ever before. How to make a balance between the exploitation of personal information and the protection of individual privacy has become an urgent issue.
In this book, the authors use methodologies from economics, especially game theory, to investigate solutions to the balance issue. They investigate the strategies of stakeholders involved in the use of personal data, and try to find the equilibrium.
The book proposes a user-role based methodology to investigate the privacy issues in data mining, identifying four different types of users, i.e. four user roles, involved in data mining applications. For each user role, the authors discuss its privacy concerns and the strategies that it can adopt to solve the privacy problems.
The book also proposes a simple game model to analyze the interactions among data provider, data collector and data miner. By solving the equilibria of the proposed game, readers can get useful guidance on how to deal with the trade-off between privacy and data utility. Moreover, to elaborate the analysis on data collector’s strategies, the authors propose a contract model and a multi-armed bandit model respectively.
The authors discuss how the owners of data (e.g. an individual or a data miner) deal with the trade-off between privacy and utility in data mining. Specifically, they study users’ strategies in collaborative filtering based recommendation system and distributed classification system. They built game models to formulate the interactions among data owners, and propose learning algorithms to find the equilibria.
商品描述(中文翻譯)
隨著「大數據」的日益普及,個人數據的潛在價值引起了越來越多的關注。基於個人數據構建的應用可以創造巨大的社會和經濟效益。然而,它們也對個人隱私帶來了嚴重的威脅。廣泛的個人數據收集、分析和交易使得個人難以保護隱私。人們對隱私的關注程度比以往任何時候都要高。如何在利用個人信息和保護個人隱私之間取得平衡,已成為一個迫切的問題。
在本書中,作者運用經濟學的方法論,特別是博弈論,來探討平衡問題的解決方案。他們研究了涉及個人數據使用的利益相關者的策略,並試圖找到均衡點。
本書提出了一種基於用戶角色的方法論來研究數據挖掘中的隱私問題,識別出四種不同類型的用戶,即四種用戶角色,這些用戶參與數據挖掘應用。對於每個用戶角色,作者討論了其隱私關注點以及可以採取的解決隱私問題的策略。
本書還提出了一個簡單的博弈模型來分析數據提供者、數據收集者和數據挖掘者之間的互動。通過解決所提出的博弈的均衡,讀者可以獲得有關如何處理隱私與數據效用之間權衡的有用指導。此外,為了詳細分析數據收集者的策略,作者分別提出了一個合約模型和一個多臂賭徒模型。
作者討論了數據擁有者(例如個人或數據挖掘者)如何在數據挖掘中處理隱私與效用之間的權衡。具體而言,他們研究了用戶在協作過濾推薦系統和分佈式分類系統中的策略。他們建立了博弈模型來表述數據擁有者之間的互動,並提出學習算法來尋找均衡點。