Enhanced Visualization: Making Space for 3-D Images (Hardcover)
暫譯: 增強視覺化:為三維影像創造空間 (精裝版)

Barry G. Blundell

  • 出版商: Wiley
  • 出版日期: 2007-02-26
  • 售價: $1,216
  • 語言: 英文
  • 頁數: 448
  • 裝訂: Hardcover
  • ISBN: 0471786292
  • ISBN-13: 9780471786290
  • 下單後立即進貨 (約5~7天)

買這商品的人也買了...

相關主題

商品描述

Description

This book builds on a previous work (‘Creative 3-D Display and Interaction Interfaces’) but may be read as a stand-alone book. A trans-disciplinary approach is adopted thereby making the content accessible to wide-ranging audiences from both the sciences and humanities. Additionally, the book is highly relevant to computer users who would like to learn more about new approaches to computer interaction, to those wishing to develop new forms of creative digital media and to those within industry who are involved in the advancement of computers and computer related products.

Table of Contents

Preface.

Acknowledgements.

Chapter One. Setting the Scene.

1.1 Introduction.

1.2 Historical Background.

1.2.1 Interaction.

1.2.2 The Display, Data Stream and Interaction Tool Interface.

1.2.3 The Conventional Display.

1.2.4 Raster and Vector Graphics.

1.3 Working within a 2-D Space.

1.4 Concerning Interaction.

1.5 Image and Interaction Spaces.

1.6 Introducing Volumetric and Varifocal Techniques.

1.6.1 The Volumetric Technique.

1.6.2 The Essence of the Volumetric paradigm.

1.6.3 The Varifocal Approach.

1.7 Discussion.

1.8 Investigations.

Chapter Two. Aspects of the Visual System.

2.1 Introduction.

2.2 Some Characteristics of the Eye.

2.3 Depth Cues.

2.3.1 Pictorial Cues.

2.3.2 Oculomotor Cues.

2.3.3 Motion Parallax.

2.3.4 Stereopsis (Binocular Parallax).

2.4 Considerations on Image Refresh.

2.5 Discussion.

2.6 Investigations.

Chapter 3. Creative 3-D Display Techniques.

3.1Introduction.

3.2 Display Subsystems.

3.3 Stereoscopic Techniques.

3.3.1 A ‘Fog Penetrating’ Televisor.

3.4Extending the Stereoscopic Approach.

3.5 The Physical 3-D Image and its Electronic Rendition.

3.6 Multi-view Displays.

3.7 On Painting and Sculpture.

3.7.1 Information Content.

3.7.2 Working within a 3-D Space.

3.7.3 Display Capability.

3.8 Discussion.

3.9 Investigations.

Chapter 4. The Swept-Volume Approach.

4.1 Introduction.

4.2 Exemplar Swept-Volume Techniques.

4.3 Swept-Volume Subsystems.

4.3.1 Image Space Creation.

4.3.2 Voxel Generation.

4.3.3 Voxel Activation.

4.4 Parallelism in Voxel Activation.

4.4.1 Restrictions in Voxel Activation.

4.4.2 Designing for Predictability.

4.5 Hardware Based Characterisation.

4.6 The Acceptance of Motion.

4.7 Dead Zones.

4.7.1 The Voxel Placement Dead Zone.

4.7.2 Distortional (Elongation) Dead Zone.

4.7.3 The Visual Dead Zone.

4.7.4 Other Forms of Dead Zone.

4.8 Discussion.

4.9 Investigations.

Chapter 5. The Static-Volume Approach.

5.1 Introduction.

5.2 An Elementary Static-Volume Implementation.

5.3 Image Space Composition.

5.4 The Classification of Static-Volume Systems.

5.5 Voxel Visibility.

5.6 Beam Intersection and the Stepwise Excitation of Fluorescence.

5.6.1 The Stepwise Excitation of Fluorescence in Gaseous Media.

5.6.2 The Stepwise Excitation of Fluorescence in Non-Gaseous Media.

5.7 The Photochromic Approach.

5.8 Dead Zones.

5.9 Discussion.

5.10 Investigations.

Chapter 6. Swept-Volume Systems: Limited Viewing Freedom.

6.1 Introduction.

6.2 Image Slices and Image Planes.

6.3 John Logie Baird Makes Space for the Third Dimension.

6.3.1 Perhaps the First Swept-Volume Displays.

6.3.2 Baird Advances Volumetric Image Depiction.

6.4 Parallel Image Planes Using Translational Motion.

6.4.1 A Reciprocating CRT.

6.4.2 Image Slices Focused onto a Moving Screen.

6.4.3 Image Slices Reflected by a Mirror: A Sinusoidal Velocity Profile.

6.4.4 The Peritron.

6.4.5 Image Slices Reflected using a Linearly Moving Mirror.

6.4.6 Image Slices Created using an Active Surface of Emission.

6.5 Parallel Image Planes Using Rotational Motion.

6.5.1 Image Planes Formed by Rotors Equipped with an Active Surface of Emission.

6.5.2 Image Planes Formed by the Rotation of a Series of Mirrors.

6.5.3 Image Planes Formed by the Rotation of a Fiber Optic Bundle.

6.5.4 The Archimedes Spiral Approach.

6.6 Discussion.

6.7 Investigations.

Chapter 7. Low Parallelism Swept-Volume Systems.

7.1 Introduction.

7.2 The Planar Screen and Fixed Beam Source(s).

7.2.1 The Planar Screen and Stationary Electron Gun(s).

7.2.2 The Video Frequency with Exhaustive Scanning.

7.3 The Planar Screen and Constant Beam Source Geometry.

7.3.1 The Planar Screen and Co-Rotating Electron Guns.

7.3.2 The Planar Screen and Non-Evasive Projection Techniques.

7.4 A Helical Screen and Passive SOE.

7.4.1 A Helix within a CRT.

7.4.2 HL3D Systems.

7.4.3 Projection onto a Helical screen.

7.5 Alternative Configurations.

7.5.1 A Tilted Planar Screen.

7.5.2 An Alternative Screen Shape.

7.5.3 Augmenting the Planar Screen.

7.5.4 A Sliced Fiber Bundle.

7.5.5 Two Degrees of Freedom.

7.6 An Early Volumetric Radar Display.

7.7 Discussion.

7.8 Investigations.

Chapter 8. Highly Parallel Swept-Volume Systems.

8.1 Introduction.

8.2 The Planar Screen and Active Surface of Emission.

8.3 The Planar Screen and Passive Surface of Emission.

8.3.1 A Plurality of Scanned Beam sources.

8.3.2 The Perspecta Display.

8.3.3 Images cast onto Rotating Mirrors.

8.4 The Helical Screen and Active Surface of Emission.

8.5 The Helical screen and Passive Surface of Emission.

8.6 The Relative Rotations of a Screen and an Array of Light Sources.

8.7 The Spinning Lens Approach.

8.8 Discussion.

8.9 Investigations.

Chapter 9. Static-Volume Systems: Example Implementations.

9.1 Introduction.

9.2 The Use of an Active Matrix of Voxel Generation Elements.

9.2.1 From Bulbs to Gas Discharge.

9.2.2 A Gas Discharge Display.

9.2.3 An Optical Fiber Technique.

9.2.4 A Stack of LCD Panels Illuminated with Polarized Light.

9.3 Voxel Activation Using Directed Beam Sources.

9.3.1 Electron Beams and a Series of Screen Meshes.

9.3.2 An Image Space Comprising Dust Particles.

9.4 The DepthCube?

9.5 The Beam Intersection Approach.

9.5.1 The Stepwise Excitation of Mercury Vapour.

9.5.2 Erbium Doped Calcium Fluoride.

9.5.3 Rare Earth Doped ZBLAN.

9.5.4 The use of Phosphor Particles Dispersed in a 3-D Medium.

9.5.5 Beam Intersection in a Phosphor Cloud.

9.5.6 The Intersection of Particle Beams in a Gas.

9.6 Stacking Image Slices.

9.6.1 The Use of Beam Splitters: Basic Configuration.

9.6.2 The Use of Beam Splitters: With Additional Optical Components.

9.7 Discussion.

9.8 Investigations.

Chapter 10. Varifocal Mirror Techniques.

10.1 Introduction.

10.2 The Geometry of the Curved Mirror.

10.3 Spherical Aberration.

10.4 Technical Considerations.

10.4.1 Image Update and Acoustic Noise.

10.4.2 Mirror Motion.

10.5 Varifocal Display System Development.

10.5.1 The Work of Alan Traub.

10.5.2 The Work of Eric Rawson.

10.5.3 The Work of Lawrence Sher.

10.5.4 The Application of the Varifocal Mirror to Medical Imaging.

10.5.5 The Work of King and Berry.

10.5 Discussion.

10.6 Investigations.

Chapter 11. The Graphics Pipeline and Interaction Issues.

11.1 Introduction.

11.2 Graphics Engine: Input and Output.

11.3 The Graphics Engine: Sequential Voxel Activation.

11.4 The Graphics Engine: Parallel Voxel Activation.

11.4.1 A Parallel Architecture.

11.5 Parallel Data Transfer.

11.6 Concerning Interaction.

11.6.1 The ‘Free Space’ Image.

11.6.2 ?Free? Image Space: Directly Generated and Projection Techniques.

11.7 Discussion.

11.8 Investigations.

Chapter 12. General Discussion: Suggestions Du Jour.

12.1 Introduction.

12.2 The Varifocal Technique.

12.3 Do Electron Beams Have a Future Role in Voxel Activation?.

12.4 Gas Discharge Devices.

12.5 The Stepwise Excitation of Fluorescence.

12.6 Other Approaches.

12.7 Discussion.

Appendix: A General Summary of Some Swept-Volume Display Characteristics.

References.

Index.

商品描述(中文翻譯)

**描述**

本書基於先前的作品《創意3D顯示與互動介面》,但也可以作為獨立的書籍來閱讀。採用跨學科的方法,使內容對來自科學和人文領域的廣泛讀者群都能夠理解。此外,本書對於希望了解計算機互動新方法的計算機使用者、希望開發新形式創意數位媒體的人士,以及參與計算機及相關產品進步的產業人士都具有高度相關性。

**目錄**

前言
致謝

**第一章:設定場景**
1.1 介紹
1.2 歷史背景
1.2.1 互動
1.2.2 顯示、數據流和互動工具介面
1.2.3 傳統顯示
1.2.4 光柵和向量圖形
1.3 在2D空間中工作
1.4 關於互動
1.5 圖像和互動空間
1.6 介紹體積和變焦技術
1.6.1 體積技術
1.6.2 體積範式的本質
1.6.3 變焦方法
1.7 討論
1.8 調查

**第二章:視覺系統的各個方面**
2.1 介紹
2.2 眼睛的一些特徵
2.3 深度線索
2.3.1 圖像線索
2.3.2 眼動線索
2.3.3 運動視差
2.3.4 立體視覺(雙眼視差)
2.4 圖像刷新考量
2.5 討論
2.6 調查

**第三章:創意3D顯示技術**
3.1 介紹
3.2 顯示子系統
3.3 立體技術
3.3.1 一種「穿透霧氣」的電視機
3.4 擴展立體方法
3.5 實體3D圖像及其電子呈現
3.6 多視角顯示
3.7 談論繪畫和雕塑
3.7.1 資訊內容
3.7.2 在3D空間中工作
3.7.3 顯示能力
3.8 討論
3.9 調查

**第四章:掃描體積方法**
4.1 介紹
4.2 範例掃描體積技術
4.3 掃描體積子系統
4.3.1 圖像空間創建
4.3.2 體素生成
4.3.3 體素激活
4.4 體素激活中的平行性
4.4.1 體素激活的限制
4.4.2 設計可預測性
4.5 硬體基礎特徵化
4.6 運動的接受
4.7 死區
4.7.1 體素放置死區
4.7.2 變形(延伸)死區
4.7.3 視覺死區
4.7.4 其他形式的死區
4.8 討論
4.9 調查

**第五章:靜態體積方法**
5.1 介紹
5.2 一個基本的靜態體積實現
5.3 圖像空間組合
5.4 靜態體積系統的分類
5.5 體素可見性
5.6 光束交集和螢光的逐步激發
5.6.1 在氣體介質中的螢光逐步激發
5.6.2 在非氣體介質中的螢光逐步激發
5.7 光致變色方法
5.8 死區
5.9 討論
5.10 調查

**第六章:掃描體積系統:有限的觀賞自由**
6.1 介紹
6.2 圖像切片和圖像平面
6.3 約翰·洛吉·貝爾德為第三維度騰出空間
6.3.1 也許是第一個掃描體積顯示
6.3.2 貝爾德推進體積圖像描繪
6.4 使用平移運動的平行圖像平面
6.4.1 往復CRT
6.4.2 將圖像切片聚焦到移動螢幕上
6.4.3 被鏡子反射的圖像切片:正弦速度曲線
6.4.4 Peritron
6.4.5 使用線性移動鏡子反射的圖像切片
6.4.6 使用主動發射表面創建的圖像切片
6.5 使用旋轉運動的平行圖像平面
6.5.1 由配備主動發射表面的轉子形成的圖像平面
6.5.2 由一系列鏡子的旋轉形成的圖像平面
6.5.3 由光纖束的旋轉形成的圖像平面
6.5.4 阿基米德螺旋方法
6.6 討論
6.7 調查

**第七章:低平行性掃描體積系統**
7.1 介紹
7.2 平面螢幕和固定光束源
7.2.1 平面螢幕和靜止電子槍
7.2.2 具有全面掃描的視頻頻率
7.3 平面螢幕和恆定光束源幾何
7.3.1 平面螢幕和共同旋轉的電子槍
7.3.2 平面螢幕和非侵入性投影技術
7.4 螺旋螢幕和被動SOE
7.4.1 CRT內的螺旋
7.4.2 HL3D系統
7.4.3 投影到螺旋螢幕上
7.5 替代配置
7.5.1 傾斜的平面螢幕
7.5.2 替代螢幕形狀
7.5.3 增強平面螢幕
7.5.4 切片光纖束
7.5.5 兩個自由度
7.6 早期的體積雷達顯示
7.7 討論
7.8 調查

**第八章:高平行性掃描體積系統**
8.1 介紹
8.2 平面螢幕和主動發射表面
8.3 平面螢幕和被動發射表面
8.3.1 多個掃描光束源
8.3.2 Perspecta顯示
8.3.3 投射到旋轉鏡子上的圖像
8.4 螺旋螢幕和主動發射表面
8.5 螺旋螢幕和被動發射表面
8.6 螢幕和光源陣列的相對旋轉
8.7 旋轉透鏡方法
8.8 討論
8.9 調查

**第九章:靜態體積系統:示例實現**
9.1 介紹
9.2 使用主動矩陣的體素生成元件
9.2.1 從燈泡到氣體放電
9.2.2 氣體放電顯示
9.2.3 光纖技術
9.2.4 一堆用偏振光照明的LCD面板
9.3 使用定向光束源的體素激活
9.3.1 電子束和一系列螢幕網格
9.3.2 包含塵埃顆粒的圖像空間