DPSM for Modeling Engineering Problems
暫譯: 工程問題建模的DPSM

Dominique Placko, Tribikram Kundu

  • 出版商: Wiley
  • 出版日期: 2007-06-01
  • 售價: $6,760
  • 貴賓價: 9.5$6,422
  • 語言: 英文
  • 頁數: 392
  • 裝訂: Hardcover
  • ISBN: 0471733148
  • ISBN-13: 9780471733140
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Description

This book is the first book on this technique; it describes the theory of DPSM in detail and covers its applications in ultrasonic, magnetic, electrostatic and electromagnetic problems in engineering.  For the convenience of the users, the detailed theory of DPSM and its applications in different engineering fields are published here in one book making it easy to acquire a unified knowledge on DPSM.

Table of Contents

Chapter 1. Basic Theory of Distributed Point Source Method (DPSM) and its Application to Some Simple Problems (D. Placko and T. Kundu).

1.1 Introduction and Historical Development of DPSM.

1.2 Basic Principles of DPSM Modeling.

1.2.1 The fundamental idea.

1.2.1.1 Basic equations.

1.2.1.2 Boundary conditions.

1.2.2 Example in the case of a magnetic open core sensor.

1.2.2.1 Governing equations and solution.

1.2.2.2 Solution of coupling equations.

1.2.2.3 Results and discussion.

1.3 Examples from Ultrasonic Transducer Modeling.

1.3.1 Justification of modeling a finite plane source by a distribution of point sources .

1.3.2 Planar piston transducer in a fluid.

1.3.2.1 Conventional surface integral technique.

1.3.2.2 Alternative distributed point source method (DPSM) for computing the ultrasonic field.

1.3.2.2.1 Matrix formulation.

1.3.2.3 Restrictions on rS for point source distribution.

1.3.3 Focused transducer in a homogeneous fluid.

1.3.4 Ultrasonic field in a non-homogeneous fluid in presence of an interface.

1.3.4.1 Pressure field computation in fluid 1 at point P.

1.3.4.2 Pressure field computation in fluid 2 at point Q.

1.3.5 DPSM technique for ultrasonic field modeling in non-homogeneous fluid.

1.3.5.1 Field computation in fluid 1.

1.3.5.1.1 Approximations in computing the field.

1.3.5.2 Field in fluid 2.

1.3.6 Ultrasonic field in presence of a scatterer.

1.3.7 Numerical results.

1.3.7.1 Ultrasonic field in a homogeneous fluid.

1.3.7.2 Ultrasonic field in a non-homogeneous fluid - DPSM technique.

1.3.7.3 Ultrasonic field in a non-homogeneous fluid - surface integral method.

1.3.7.4 Ultrasonic field in presence of a finite size scatterer.

References.

Chapter 2. Advanced Theory of DPSM - Modeling Multi-Layered Medium and Inclusions of Arbitrary Shape (T. Kundu and D. Placko).

2.1 Introduction.

2.2 Theory of Multi-Layered Medium Modeling.

2.2.1 Transducer faces not coinciding with any interface.

2.2.1.1 Source strength determination from boundary and interface conditions.

2.2.2 Transducer faces coinciding with the interface - Case 1: Transducer faces modeled separately.

2.2.2.1 Source strength determination from interface and boundary conditions.

2.2.2.2 Counting number of equations and number of unknowns.

2.2.3 Transducer faces coinciding with the interface - Case 2: Transducer faces are part of the interface.

2.2.3.1 Source strength determination from interface and boundary conditions.

2.2.4 Special case involving one interface and one transducer only.

2.3 Theory for Multi-layered Medium Considering the Interaction Effect on the Transducer Surface .

2.3.1 Source strength determination from interface conditions.

2.3.2 Counting number of equations and number of unknowns.

2.4 Interference between two Transducers: Step-by-Step Analysis of Multiple Reflection.

2.5 Scattering by an Inclusion of Arbitrary Shape.

2.6 Scattering by an Inclusion of Arbitrary Shape - An Alternative Approach.

2.7 Electric Field in a Multi-Layered Medium.

2.8 Ultrasonic Field in a Multi-Layered Fluid Medium.

2.8.1 Ultrasonic field developed in a three-layered medium.

2.8.2 Ultrasonic field developed in a four-layered fluid medium.

References.

Chapter 3. Ultrasonic Modeling in Fluid Media (T. Kundu, R. Ahmad, N. Alnuaimi and D. Placko).

3.1 Introduction.

3.2 Primary and Secondary Sources.

3.3 Modeling Ultrasonic Transducers of Finite Dimension Immersed in a Homogeneous Fluid.

3.3.1 Numerical results - ultrasonic transducers of finite dimension immersed in fluid.

3.4 Modeling Ultrasonic Transducers of Finite Dimension Immersed in a Non-Homogeneous Fluid.

3.4.1 Obtaining the strengths of active and passive source layers.

3.4.1.1 Computation of the source strength vectors when multiple reflection between the transducer and the interface are ignored.

3.4.1.2 Computation of the source strength vectors considering the interaction effects between the transducer and the interface .

3.4.2 Numerical results - ultrasonic transducer immersed in non-homogeneous fluid.

3.5 Reflection at a Fluid-Solid Interface - Ignoring Multiple Reflections between the Transducer Surface and the Interface.

3.5.1 Numerical results for fluid-solid interface.

3.6 Modeling Ultrasonic Field in Presence of a Thin Scatterer of Finite Dimension.

3.7 Modeling Ultrasonic Field inside a Multi-Layered Fluid Medium.

3.8 Modeling Phased-Array Transducers Immersed in a Fluid.

3.8.1 Description and use of phased array transducers.

3.8.2 Theory of phased array transducer modeling.

3.8.3 Dynamic focusing and time lag determination.

3.8.4 Interaction between two transducers in a homogeneous fluid .

3.8.5 Numerical results for phased array transducer modeling.

3.8.5.1 Dynamic steering and focusing.

3.8.5.2 Interaction between two phased array transducers placed face to face.

Reference.

Chapter 4. Advanced Applications of Distributed Point Source Method - Ultrasonic Field Modeling in Solid Media (S. Banerjee and T. Kundu).

4.1 Introduction.

4.2 Calculation of Displacement and Stress Green’s Functions in Solids.

4.2.1 Point source excitation in a solid.

4.2.2 Calculation of displacement Green’s function.

4.2.3 Calculation of stress Green’s function.

4.3 Elemental Point Source in a Solid.

4.3.1 Displacement and stress Green’s functions.

4.3.2 Differentiation of displacement Green’s function with respect to x1, x2, x3.

4.3.3 Computation of displacements and stresses in the solid for multiple point sources.

4.3.4 Matrix representation.

4.4 Calculation of Pressure and Displacement Green’s Functions in the Fluid Adjacent to the Solid Half-Space.

4.4.1 Displacement and potential Green’s functions in the fluid.

4.4.2 Computation of displacement and pressure in the fluid.

4.4.3 Matrix representation.

4.5 Application 1: Ultrasonic Field Modeling near Fluid-Solid Interface [Banerjee et al. 2006].

4.5.1 Matrix formulation to calculate source strengths.

4.5.2 Boundary conditions.

4.5.3 Solution.

4.5.4 Numerical results on ultrasonic field modeling near fluid-solid interface.

4.6 Application 2: Ultrasonic Field Modeling in a Solid Plate [Banerjee and Kundu 2006a].

4.6.1 Ultrasonic field modeling in a homogeneous solid plate.

4.6.2 Matrix formulation to calculate source strengths.

4.6.3 Boundary and continuity conditions.

4.6.4 Solution.

4.6.5 Numerical results on ultrasonic field modeling in solid plates.

4.7 Application 3: Ultrasonic Fields in Solid Plates with Inclusion or Horizontal Cracks [Banerjee and Kundu 2006b].

4.7.1 Problem geometry.

4.7.2 Matrix formulation.

4.7.3 Boundary and continuity conditions.

4.7.4 Solution.

4.7.5 Numerical results on ultrasonic fields in solid plate with horizontal crack.

4.8 Application 4: Ultrasonic Field Modeling in Sinusoidally Corrugated Wave Guides [Banerjee and Kundu 2006c].

4.8.1 Theory.

4.8.2 Numerical results on ultrasonic fields in sinusoidal corrugated wave guides.

4.9 Calculation of Green’s Functions in Transversely Isotropic and Anisotropic Solids.

4.9.1 Governing differential equation for Green’s function calculation.

4.9.2 Radon transform.

4.9.3 Basic properties of Radon transform.

4.9.4 Displacement and stress Green’s functions.

References.

Chapter 5. DPSM Formulation for Basic Magnetic Problems (N. Liebeaux and D. Placko).

5.1 Introduction .

5.2 DPSM Formulation for Magnetic Problems.

5.2.1 The Biot-Savart law as a DPSM current source definition.

5.2.1.1 Wire of infinite length.

5.2.1.2 Current loop.

5.2.2 Current loops above a semi-infinite conductive target.

5.2.3 Current loops above a semi-infinite magnetic target.

5.2.4 Current loop circling a magnetic core.

5.2.4.1 Geometry.

5.2.4.2 DPSM formulation.

5.2.4.3 Results.

5.2.5 Finite Element Simulation - Comparisons.

5.3 Conclusion.

References.

Chapter 6. Advanced Magnetodynamic and Electromagnetic Problems(D. Placko and N. Liebeaux).

6.1 Introduction.

6.2 DPSM Formulation using Green’s Sources.

6.2.1 Green’s theory.

6.2.2 Green’s function in free homogeneous space.

6.3 Green’s Functions and DPSM Formulation.

6.3.1 Expressions of the magnetic and electric fields.

6.3.2 Boundary conditions.

6.4 Example of Application.

6.4.1 Target in aluminum (σ= 50 Ms/m), frequency = 1000 Hz.

6.4.2 Target in aluminum (σ= 50 Ms/m), frequency = 100 Hz, inclined excitation loop.

6.4.3 Dielectric target (εr = 5), frequency = 3 GHz, 10° tilted excitation loop.

6.5 Conclusion.

References.

Chapter 7. Electrostatic Modeling and Basic Applications (G. Lissorgues, A. Cruau and D. Placko).

7.1 Introduction.

7.2 Modeling by DPSM.

7.2.1 Digitalization of the problem.

7.2.2 DPSM meshing considerations.

7.2.3 Matrix formulation.

7.3 Solving the System.

7.3.1 Synthesizing electrostatic field and potential.

7.3.2 Capacitance calculation.

7.4 Examples Based on Parallel-Plate Capacitors.

7.4.1 Description.

7.4.2 Equations.

7.4.3 Results of simulation.

7.4.4 Gap-tuning variable capacitor.

7.4.5 Surface-tuning variable capacitor.

7.5 Summary.

References.

Chapter 8. Advanced Electrostatic Problems: Multi-Layered Dielectric Medium and Masking Issues (G. Lissorgues, A. Cruau and D. Placko).

8.1 Introduction.

8.2 Multi-Layered Systems.

8.3 Examples of Multi-Material Electrostatic Structure.

8.3.1 Parallel-plate capacitor with two dielectric layers.

8.3.2 Permittivity-tuning varactors.

8.4 Multi-Conductor Systems: Masking Issues.

8.4.1 Example of multi-conductor system.

References.

Chapter 9. Basic Electromagnetic Problems (M. Lemistre and D. Placko).

9.1 Introduction.

9.2 Theoretical Considerations.

9.2.1 Maxwell’s equations.

9.2.2 Radiation of dipoles.

9.2.2.1 Electromagnetic field radiated by a current distribution.

9.2.2.2 Electric dipole.

9.2.2.3 Magnetic dipole.

9.2.3 The surface impedance.

9.2.4 Diffraction by a circular aperture.

9.2.5 Eddy currents.

9.2.6 Polarization of dielectrics.

9.3 Principle of Electromagnetic Probe for NDE.

9.3.1 Application to dielectric materials.

9.3.2 Application to conductive materials.

9.3.2.1 Magnetic method.

9.3.2.2 Hybrid method.

9.4 Electromagnetic Method for Structural Health Monitoring Applications.

9.4.1 Generalities.

9.4.2 Hybrid method.

9.4.3 Electric method.

References.

Chapter 10. Advanced Electromagnetic Problems with Industrial Applications (M. Lemistre and D. Placko).

10.1 Introduction.

10.2 Modeling the Sources.

10.2.1 Generalities.

10.2.2 Primary source.

10.2.3 Boundary conditions.

10.3 Modeling a Defect Inside the Structure.

10.4 Solving the Inverse Problem.

10.5 Conclusion.

Chapter 11. DPSM Beta Program User’s Manual (A. Cruau and D. Placko).

11.1 Introduction.

11.2 Glossary.

11.3 Modeling Preparation.

11.4 Program Steps.

11.5 Conclusion.

Index. 

商品描述(中文翻譯)

**描述**
這本書是關於此技術的第一本書;它詳細描述了分佈點源法(DPSM)的理論,並涵蓋了其在工程中超聲、磁性、靜電和電磁問題的應用。為了方便使用者,DPSM的詳細理論及其在不同工程領域的應用在這本書中集中出版,使得獲得統一的DPSM知識變得容易。

**目錄**
**第1章 分佈點源法(DPSM)的基本理論及其在一些簡單問題中的應用(D. Placko 和 T. Kundu)**
1.1 DPSM的介紹與歷史發展
1.2 DPSM建模的基本原則
1.2.1 基本思想
1.2.1.1 基本方程
1.2.1.2 邊界條件
1.2.2 磁性開口核心傳感器的例子
1.2.2.1 控制方程及解
1.2.2.2 耦合方程的解
1.2.2.3 結果與討論
1.3 超聲換能器建模的例子
1.3.1 透過點源分佈來建模有限平面源的合理性
1.3.2 流體中的平面活塞換能器
1.3.2.1 傳統的表面積分技術
1.3.2.2 用於計算超聲場的替代分佈點源法(DPSM)
1.3.2.2.1 矩陣公式化
1.3.2.3 點源分佈的rS限制
1.3.3 同質流體中的聚焦換能器
1.3.4 在存在界面的非同質流體中的超聲場
1.3.4.1 在流體1中點P的壓力場計算
1.3.4.2 在流體2中點Q的壓力場計算
1.3.5 在非同質流體中進行超聲場建模的DPSM技術
1.3.5.1 在流體1中的場計算
1.3.5.1.1 計算場時的近似
1.3.5.2 在流體2中的場
1.3.6 在存在散射體的情況下的超聲場
1.3.7 數值結果
1.3.7.1 在同質流體中的超聲場
1.3.7.2 在非同質流體中的超聲場 - DPSM技術
1.3.7.3 在非同質流體中的超聲場 - 表面積分方法
1.3.7.4 在有限大小散射體存在下的超聲場
參考文獻

**第2章 DPSM的進階理論 - 多層介質和任意形狀包含物的建模(T. Kundu 和 D. Placko)**
2.1 介紹
2.2 多層介質建模的理論
2.2.1 換能器面不與任何界面重合
2.2.1.1 從邊界和界面條件確定源強度
2.2.2 換能器面與界面重合 - 案例1:單獨建模的換能器面
2.2.2.1 從界面和邊界條件確定源強度
2.2.2.2 計算方程數量和未知數量
2.2.3 換能器面與界面重合 - 案例2:換能器面是界面的一部分
2.2.3.1 從界面和邊界條件確定源強度
2.2.4 僅涉及一個界面和一個換能器的特殊情況
2.3 考慮換能器表面相互作用效應的多層介質理論
2.3.1 從界面條件確定源強度
2.3.2 計算方程數量和未知數量
2.4 兩個換能器之間的干涉:多重反射的逐步分析
2.5 任意形狀包含物的散射
2.6 任意形狀包含物的散射 - 替代方法
2.7 多層介質中的電場
2.8 多層流體介質中的超聲場
2.8.1 在三層介質中發展的超聲場
2.8.2 在四層流體介質中發展的超聲場
參考文獻

**第3章 流體介質中的超聲建模(T. Kundu, R. Ahmad, N. Alnuaimi 和 D. Placko)**
3.1 介紹
3.2 初級和次級源
3.3 在同質流體中浸沒的有限尺寸超聲換能器建模
3.3.1 數值結果 - 浸沒在流體中的有限尺寸超聲換能器
3.4 在非同質流體中浸沒的有限尺寸超聲換能器建模
3.4.1 獲取主動和被動源層的強度
3.4.1.1 當忽略換能器與界面之間的多重反射時計算源強度向量
3.4.1.2 考慮換能器與界面之間相互作用效應的源強度向量計算
3.4.2 數值結果 - 浸沒在非同質流體中的超聲換能器
3.5 流體-固體界面的反射 - 忽略換能器表面與界面之間的多重反射
3.5.1 流體-固體界面的數值結果
3.6 在有限尺寸薄散射體存在下的超聲場建模
3.7 在多層流體介質內的超聲場建模
3.8 浸沒在流體中的相控陣列換能器建模
3.8.1 相控陣列換能器的描述和使用
3.8.2 相控陣列換能器建模的理論
3.8.3 動態聚焦和時間延遲的確定
3.8.4 在同質流體中兩個換能器之間的相互作用
3.8.5 相控陣列換能器建模的數值結果
3.8.5.1 動態引導和聚焦
3.8.5.2 面對面放置的兩個相控陣列換能器之間的相互作用
參考文獻

**第4章 分佈點源法的進階應用 - 固體介質中的超聲場建模(S. Banerjee 和 T. Kundu)**
4.1 介紹
4.2 在固體中計算位移和應力的格林函數
4.2.1 在固體中的點源激發
4.2.2 位移格林函數的計算
4.2.3 應力格林函數的計算
4.3 固體中的元素點源
4.3.1 位移和應力的格林函數
4.3.2 對x1, x2, x3的位移格林函數進行微分
4.3.3 計算多個點源在固體中的位移和應力
4.3.4 矩陣表示
4.4 在固體半空間相鄰流體中計算壓力和位移的格林函數
4.4.1 流體中的位移和勢的格林函數
4.4.2 計算流體中的位移和壓力
4.4.3 矩陣表示
4.5 應用1:流體-固體界面附近的超聲場建模 [Banerjee et al. 2006]
4.5.1 計算源強度的矩陣公式化
4.5.2 邊界條件
4.5.3 解
4.5.4 流體-固體界面附近超聲場建模的數值結果
4.6 應用2:固體板中的超聲場建模 [Banerjee 和 Kundu 2006a]
4.6.1 在同質固體板中的超聲場建模
4.6.2 計算源強度的矩陣公式化
4.6.3 邊界和連續性條件
4.6.4 解
4.6.5 固體板中超聲場建模的數值結果
4.7 應用3:具有包含物或水平裂縫的固體板中的超聲場 [Banerjee 和 Kundu 2006b]
4.7.1 問題幾何
4.7.2 矩陣公式化
4.7.3 邊界和連續性條件
4.7.4 解
4.7.5 在具有水平裂縫的固體板中超聲場的數值結果
4.8 應用4:在正弦波起伏波導中的超聲場建模 [Banerjee 和 Kundu 2006c]
4.8.1 理論
4.8.2 在正弦波起伏波導中的超聲場的數值結果
4.9 在橫向各向同性和各向異性固體中計算格林函數
4.9.1 格林函數計算的控制微分方程
4.9.2 拉東變換
4.9.3 拉東變換的基本性質
4.9.4 位移和應力的格林函數
參考文獻

**第5章 基本磁性問題的DPSM公式化(N. Liebeaux 和 D. Placko)**
5.1 介紹
5.2 磁性問題的DPSM公式化
5.2.1 比奧-薩伐爾定律作為DPSM電流源定義
5.2.1.1 無限長的導線
5.2.1.2 電流環
5.2.2 在半無限導電目標上方的電流環
5.2.3 在半無限磁性目標上方的電流環
5.2.4 繞著磁核心的電流環
5.2.4.1 幾何
5.2.4.2 DPSM公式化
5.2.4.3 結果
5.2.5 有限元模擬 - 比較
5.3 結論
參考文獻

**第6章 進階磁動力學和電磁問題(D. Placko 和 N. Liebeaux)**
6.1 介紹
6.2 使用格林源的DPSM公式化
6.2.1 格林理論
6.2.2 自由同質空間中的格林函數
6.3 格林函數和DPSM公式化
6.3.1 磁場和電場的表達式
6.3.2 邊界條件
6.4 應用示例
6.4.1 鋁中的目標(σ= 50 Ms/m),頻率 = 1000 Hz
6.4.2 鋁中的目標(σ= 50 Ms/m),頻率 = 100 Hz,傾斜激發環
6.4.3 電介質目標(&ε;r = 5),頻率 = 3 GHz,10°傾斜激發環
6.5 結論
參考文獻

**第7章 靜電建模及基本應用(G. Lissorgues, A. Cruau 和 D. Placko)**
7.1 介紹
7.2 透過DPSM建模
7.2.1 問題的數位化
7.2.2 DPSM網格考量
7.2.3 矩陣公式化
7.3 解系統
7.3.1 合成靜電場和勢
7.3.2 電容計算
7.4 基於平行板電容器的例子
7.4.1 描述
7.4.2 方程
7.4.3 模擬結果
7.4.4 間隙調整可變電容器
7.4.5 表面調整可變電容器
7.5 總結
參考文獻

**第8章 進階靜電問題:多層介電介質和遮蔽問題(G. Lissorgues, A. Cruau 和 D. Placko)**
8.1 介紹
8.2 多層系統
8.3 多材料靜電結構的例子
8.3.1 具有兩層介電質的平行板電容器
8.3.2 介電常數調整可變電容器
8.4 多導體系統:遮蔽問題
8.4.1 多導體系統的例子
參考文獻

**第9章 基本電磁問題(M. Lemistre 和 D. Placko)**
9.1 介紹
9.2 理論考量
9.2.1 馬克士威方程
9.2.2 偶極子的輻射
9.2.2.1 電磁