商品描述
This book gives a comprehensive introduction to Green’s function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory of waveguides, Fresnel reflection, and scattering, extinction, and absorption cross sections. This is followed by a presentation of different types of GFIEMs of increasing complexity for one-, two-, and three-dimensional scattering problems. In GFIEMs, the electromagnetic field at any position is directly related to the field at either the inside or the surface of a scattering object placed in a reference structure. The properties of the reference structure, and radiating or periodic boundary conditions, are automatically taken care of via the choice of Green’s function. This book discusses in detail how to solve the integral equations using either simple or higher-order finite-element-based methods; how to calculate the relevant Green’s function for different reference structures and choices of boundary conditions; and how to calculate near-fields, optical cross sections, and the power emitted by a local source. Solution strategies for large structures are discussed based on either transfer-matrix-approaches or the conjugate gradient algorithm combined with the Fast Fourier Transform. Special attention is given to reducing the computational problem for three-dimensional structures with cylindrical symmetry by using cylindrical harmonic expansions.
Each presented method is accompanied by examples from nano-optics, including: resonant metal nano-particles placed in a homogeneous medium or on a surface or waveguide; a microstructured gradient-index-lens; the Purcell effect for an emitter in a photonic crystal; the excitation of surface plasmon polaritons by second-harmonic generation in a polymer fiber placed on a thin metal film; and anti-reflective, broadband absorbing or resonant surface microstructures. Each presented method is also accompanied by guidelines for software implementation and exercises.
商品描述(中文翻譯)
這本書全面介紹了綠函數積分方程方法(GFIEMs)在納米光學領域中解決散射問題的應用。首先,簡要回顧了電磁學、光學和散射理論中最重要的理論基礎,包括波導理論、菲涅耳反射以及散射、消光和吸收截面。接著,介紹了不同類型的GFIEMs,這些方法的複雜性逐漸增加,適用於一維、二維和三維的散射問題。在GFIEMs中,任何位置的電磁場與放置在參考結構中的散射物體內部或表面的場直接相關。參考結構的特性以及輻射或周期邊界條件,通過選擇綠函數自動處理。本書詳細討論了如何使用簡單或高階有限元素法解決積分方程;如何計算不同參考結構和邊界條件選擇下的相關綠函數;以及如何計算近場、光學截面和局部源發射的功率。對於大型結構的解決策略,基於轉移矩陣方法或結合快速傅立葉變換的共軛梯度算法進行討論。特別注意通過使用圓柱諧波展開來減少三維結構的計算問題,這些結構具有圓柱對稱性。
每種方法都附有來自納米光學的示例,包括:放置在均勻介質或表面或波導上的共振金屬納米粒子;微構造梯度折射率透鏡;光子晶體中發射器的普爾塞爾效應;在薄金屬膜上放置的聚合物光纖中通過二次諧波產生激發表面等離子體極化子;以及抗反射、寬頻吸收或共振表面微結構。每種方法還附有軟體實現的指導和練習。