Learning from Data: Concepts, Theory, and Methods (Hardcover)
暫譯: 從數據中學習:概念、理論與方法 (精裝版)
Vladimir Cherkassky, Filip M. Mulier
- 出版商: Wiley
- 出版日期: 2007-08-24
- 售價: $6,150
- 貴賓價: 9.5 折 $5,843
- 語言: 英文
- 頁數: 538
- 裝訂: Hardcover
- ISBN: 0471681822
- ISBN-13: 9780471681823
已絕版
買這商品的人也買了...
-
$880$695 -
$550$435 -
$980$774 -
$520$442 -
$1,045Introduction to Logic and Computer Design (IE-Paperback)
-
$1,340$1,273 -
$750CompTIA Security+ Study Guide: Exam SY0-101, 3/e (Paperback)
-
$860$731 -
$580$493 -
$990$891 -
$299$236 -
$600$480 -
$720$569 -
$650$514 -
$580$551 -
$490$387 -
$620$527 -
$780$616 -
$820$648 -
$850$723 -
$750$593 -
$1,200$1,140 -
$420$357 -
$2,010$1,910 -
$900Defensive Security Handbook: Best Practices for Securing Infrastructure
商品描述
An interdisciplinary framework for learning methodologies—covering statistics, neural networks, and fuzzy logic, this book provides a unified treatment of the principles and methods for learning dependencies from data. It establishes a general conceptual framework in which various learning methods from statistics, neural networks, and fuzzy logic can be applied—showing that a few fundamental principles underlie most new methods being proposed today in statistics, engineering, and computer science. Complete with over one hundred illustrations, case studies, and examples making this an invaluable text.
商品描述(中文翻譯)
一個跨學科的學習方法框架——本書涵蓋統計學、神經網絡和模糊邏輯,提供了一個統一的原則和方法來從數據中學習依賴關係。它建立了一個通用的概念框架,在這個框架中,各種來自統計學、神經網絡和模糊邏輯的學習方法都可以應用——顯示出幾個基本原則是當今在統計學、工程學和計算機科學中提出的大多數新方法的基礎。本書包含超過一百幅插圖、案例研究和示例,使其成為一本無價的教材。