Independent Component Analysis (Hardcover)
暫譯: 獨立成分分析 (精裝版)

Aapo Hyvärinen, Juha Karhunen, Erkki Oja

  • 出版商: Wiley
  • 出版日期: 2001-06-01
  • 售價: $1,387
  • 語言: 英文
  • 頁數: 504
  • 裝訂: Hardcover
  • ISBN: 047140540X
  • ISBN-13: 9780471405405
  • 下單後立即進貨 (約5~7天)

買這商品的人也買了...

相關主題

商品描述

A comprehensive introduction to ICA for students and practitioners

Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more.

Independent Component Analysis is divided into four sections that cover:

  • General mathematical concepts utilized in the book
  • The basic ICA model and its solution
  • Various extensions of the basic ICA model
  • Real-world applications for ICA models

Authors Hyvärinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.

Table of Contents

Preface.

Introduction.

MATHEMATICAL PRELIMINARIES.

Random Vectors and Independence.

Gradients and Optimization Methods.

Estimation Theory.

Information Theory.

Principal Component Analysis and Whitening.

BASIC INDEPENDENT COMPONENT ANALYSIS.

What is Independent Component Analysis?

ICA by Maximization of Nongaussianity.

ICA by Maximum Likelihood Estimation.

ICA by Minimization of Mutual Information.

ICA by Tensorial Methods.

ICA by Nonlinear Decorrelation and Nonlinear PCA.

Practical Considerations.

Overview and Comparison of Basic ICA Methods.

EXTENSIONS AND RELATED METHODS.

Noisy ICA.

ICA with Overcomplete Bases.

Nonlinear ICA.

Methods using Time Structure.

Convolutive Mixtures and Blind Deconvolution.

Other Extensions.

APPLICATIONS OF ICA.

Feature Extraction by ICA.

Brain Imaging Applications.

Telecommunications.

Other Applications.

References.

Index.

商品描述(中文翻譯)

獨立成分分析(ICA)對於學生和實務工作者的全面介紹

獨立成分分析(Independent Component Analysis, ICA)是神經網絡、高級統計和信號處理等領域中最令人興奮的新主題之一。本書是第一本提供這一新技術的全面介紹,並包含理解和利用它所需的基本數學背景。它提供了ICA基礎知識的概述、重要的解決方案和算法,以及在圖像處理、電信、音頻信號處理等新應用的深入探討。

獨立成分分析分為四個部分,涵蓋:


  • 本書中使用的一般數學概念

  • 基本ICA模型及其解決方案

  • 基本ICA模型的各種擴展

  • ICA模型的實際應用

作者Hyvärinen、Karhunen和Oja因其對ICA發展的貢獻而廣為人知,並在本書中涵蓋了所有相關理論、新算法和各個領域的應用。來自各個學科的研究人員、學生和實務工作者將會發現這本易於理解的書籍既有幫助又具資訊性。

目錄

前言。

介紹。

數學初步。

隨機向量與獨立性。

梯度與優化方法。

估計理論。

信息理論。

主成分分析與白化。

基本獨立成分分析。

什麼是獨立成分分析?

通過非高斯性最大化的ICA。

通過最大似然估計的ICA。

通過互信息最小化的ICA。

通過張量方法的ICA。

通過非線性去相關和非線性主成分分析的ICA。

實際考量。

基本ICA方法的概述與比較。

擴展與相關方法。

噪聲ICA。

具有過完備基的ICA。

非線性ICA。

使用時間結構的方法。

卷積混合與盲解卷積。

其他擴展。

ICA的應用。

通過ICA進行特徵提取。

腦成像應用。

電信。

其他應用。

參考文獻。

索引。