Data Mining: Concepts, Models, Methods, and Algorithms
暫譯: 資料探勘:概念、模型、方法與演算法

Mehmed Kantardzic

買這商品的人也買了...

相關主題

商品描述

A comprehensive introduction to the exploding field of data mining

We are surrounded by data, numerical and otherwise, which must be analyzed and processed to convert it into information that informs, instructs, answers, or otherwise aids understanding and decision-making. Due to the ever-increasing complexity and size of today’s data sets, a new term, data mining, was created to describe the indirect, automatic data analysis techniques that utilize more complex and sophisticated tools than those which analysts used in the past to do mere data analysis.

Data Mining: Concepts, Models, Methods, and Algorithms discusses data mining principles and then describes representative state-of-the-art methods and algorithms originating from different disciplines such as statistics, machine learning, neural networks, fuzzy logic, and evolutionary computation. Detailed algorithms are provided with necessary explanations and illustrative examples.

This text offers guidance: how and when to use a particular software tool (with their companion data sets) from among the hundreds offered when faced with a data set to mine. This allows analysts to create and perform their own data mining experiments using their knowledge of the methodologies and techniques provided.

This book emphasizes the selection of appropriate methodologies and data analysis software, as well as parameter tuning. These critically important, qualitative decisions can only be made with the deeper understanding of parameter meaning and its role in the technique that is offered here. Data mining is an exploding field and this book offers much-needed guidance to selecting among the numerous analysis programs that are available.

商品描述(中文翻譯)

全面介紹快速發展的資料探勘領域

我們被數據所包圍,無論是數值型還是非數值型,這些數據必須經過分析和處理,以轉換為能夠提供資訊、指導、回答或以其他方式幫助理解和決策的信息。由於當今數據集的複雜性和規模不斷增加,出現了一個新術語——資料探勘(data mining),用來描述那些利用比過去分析師所使用的更複雜和精密的工具進行間接、自動數據分析的技術。

《資料探勘:概念、模型、方法與演算法》討論了資料探勘的原則,然後描述了來自不同學科(如統計學、機器學習、神經網絡、模糊邏輯和進化計算)的代表性先進方法和演算法。書中提供了詳細的演算法,並附有必要的解釋和示例。

本書提供指導:在面對一個需要探勘的數據集時,如何以及何時使用數百種可用的特定軟體工具(及其伴隨的數據集)。這使得分析師能夠利用所提供的方法論和技術,創建並執行自己的資料探勘實驗。

本書強調選擇適當的方法論和數據分析軟體,以及參數調整。這些至關重要的質性決策只能在對參數意義及其在技術中角色有更深入理解的情況下做出。資料探勘是一個快速發展的領域,本書提供了在眾多可用分析程序中選擇所需的指導。