Statistical Learning Theory
暫譯: 統計學習理論

Vladimir N. Vapnik

  • 出版商: Wiley
  • 出版日期: 1998-09-30
  • 售價: $8,310
  • 貴賓價: 9.5$7,895
  • 語言: 英文
  • 頁數: 768
  • 裝訂: Hardcover
  • ISBN: 0471030031
  • ISBN-13: 9780471030034
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Description:

A comprehensive look at learning and generalization theory. The statistical theory of learning and generalization concerns the problem of choosing desired functions on the basis of empirical data. Highly applicable to a variety of computer science and robotics fields, this book offers lucid coverage of the theory as a whole. Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.

 

Table of Contents:

Partial table of contents:

THEORY OF LEARNING AND GENERALIZATION.

Two Approaches to the Learning Problem.

Estimation of the Probability Measure and Problem of Learning.

Conditions for Consistency of Empirical Risk Minimization Principle.

The Structural Risk Minimization Principle.

Stochastic Ill-Posed Problems.

SUPPORT VECTOR ESTIMATION OF FUNCTIONS.

Perceptrons and Their Generalizations.

SV Machines for Function Approximations, Regression Estimation, and Signal Processing.

STATISTICAL FOUNDATION OF LEARNING THEORY.

Necessary and Sufficient Conditions for Uniform Convergence of Frequencies to Their Probabilities.

Necessary and Sufficient Conditions for Uniform One-Sided Convergence of Means to Their Expectations.

Comments and Bibliographical Remarks.

References.

Index.

商品描述(中文翻譯)

**描述:**
本書全面探討學習與泛化理論。學習與泛化的統計理論涉及根據實證數據選擇所需函數的問題。該理論在多個計算機科學和機器人領域中具有高度的應用性,本書對整體理論提供了清晰的闡述。作者提出了一種方法來確定學習過程一致性的必要和充分條件,涵蓋了從小數據池中進行函數估計,並將這些估計應用於現實問題等內容。

**目錄:**
部分目錄:
學習與泛化理論。
學習問題的兩種方法。
概率測度的估計與學習問題。
經驗風險最小化原則的一致性條件。
結構風險最小化原則。
隨機病態問題。
支持向量函數估計。
感知器及其泛化。
用於函數近似、回歸估計和信號處理的SV機器。
學習理論的統計基礎。
頻率均勻收斂到其概率的必要和充分條件。
均勻單側收斂到其期望的必要和充分條件。
評論與文獻說明。
參考文獻。
索引。