買這商品的人也買了...
-
$1,029Fundamentals of Data Structures in C++
-
$600$474 -
$780$616 -
$1,710$1,625 -
$450$351 -
$590$466 -
$1,590$1,511 -
$580$458 -
$750$638 -
$560$476 -
$490$387 -
$460$359 -
$1,590$1,511 -
$750$593 -
$590$460 -
$620$484 -
$690$587 -
$480$379 -
$780$616 -
$680$578 -
$480$374 -
$680$578 -
$680$578 -
$760$600 -
$760$600
商品描述
Description:
Today's aggressively competitive networking market requires offering the maximum range of services using prevailing assets, not building bigger, more complicated networks, but smarter, more scalable infrastructures. It isn't an easy thing to do.
The challenge is to develop an existing network so as to maximise its profitability. A multi-vendor approach to the subject is necessary, since existing infrastructure is rarely homogeneous. Discussion cannot merely be rooted in theory, but has to bring to the fore actual designs and real development.
Guy Davies's invaluable reference tool is the product of many years' experience in designing and developing real scalable systems for both service providers and enterprise networks. It is a comprehensive demonstration of how to build scalable networks, the pitfalls to avoid, and a compilation of the most successful mechanisms available for engineers building and operating IP networks.
Designing and Developing Scalable IP Networks:
- Documents practical scaling mechanisms for both service providers and enterprise networks using illustrative real world configuration examples.
- Recommends policy choices and explains them in the context of the commercial environment.
- Provides a reference for engineers building and migrating networks based on the author's familiarity with both Juniper Networks' components and Cisco Systems' routers.
- Is founded on the author’s experience working with large networks in the USA and Europe, as well as Asia Pacific.
This incomparable reference to scaling networks is suitable for network designers, architects, engineers and managers. It will also be an authoritative guide for technically aware sales and marketing staff and service engineers. It is a valuable resource for graduate and final year computing and communications engineering students and for engineers studying for both the JNCIE and CCIE examinations.
Table of Contents:
List of Figures.
List of Tables.
About the Author.
Acknowledgements.
Abbreviations.
Introduction.
1 Hardware Design.
1.1 Separation of Routing and Forwarding Functionality.
1.2 Building Blocks.
1.2.1 Control Module.
1.2.2 Forwarding Module.
1.2.3 Non-Stop Forwarding.
1.2.4 Stateful Failover.
1.3 To Flow or Not to Flow?
1.4 Hardware Redundancy, Single Chassis or Multi Chassis.
2 Transport Media.
2.1 Maximum Transmission Unit (MTU).
2.1.1 Path MTU Discovery.
2.1.2 Port Density.
2.1.3 Channelized Interfaces.
2.2 Ethernet.
2.2.1 Address Resolution Protocol (ARP).
2.2.2 MTU.
2.3 Asynchronous Transfer Mode (ATM).
2.4 Packet Over SONET (POS).
2.5 SRP/RPR and DPT.
2.5.1 Intelligent Protection Switching.
2.6 (Fractional) E1/T1/E3/T3.
2.7 Wireless Transport.
2.7.1 Regulatory Constraints.
2.7.2 Interference.
2.7.3 Obstructions.
2.7.4 Atmospheric Conditions.
2.7.5 If it is so bad . . . .
3 Router and Network Management.
3.1 The Importance of an Out-Of-Band (OOB) Network.
3.1.1 Management Ethernet.
3.1.2 Console Port.
3.1.3 Auxiliary (Aux) Port.
3.1.4 Remote Power Management.
3.1.5 Uninterruptible Power Supplies (UPS).
3.2 Network Time Protocol (NTP).
3.3 Logging.
3.4 Simple Network Management Protocol (SNMP).
3.4.1 SNMPv1, v2c and v3.
3.5 Remote Monitoring (RMON).
3.6 Network Management Systems.
3.6.1 CiscoWorks.
3.6.2 JUNOScope.
3.6.3 Non-Proprietary Systems.
3.7 Configuration Management.
3.7.1 Concurrent Version System (CVS).
3.7.2 Scripting and Other Automated Configuration Distribution and Storage Mechanisms.
3.8 To Upgrade or Not to Upgrade.
3.8.1 Software Release Cycles.
3.9 Capacity Planning Techniques.
4 Network Security.
4.1 Securing Access to Your Network Devices.
4.1.1 Physical Security.
4.1.2 Authentication, Authorization and Accounting (AAA).
4.2 Securing Access to the Network Infrastructure.
4.2.1 Authentication of Users, Hosts and Servers.
4.2.2 Encryption of Information.
4.2.3 Access Tools and Protocols.
4.2.4 IP Security (IPsec).
4.2.5 Access Control Lists.
4.2.6 RFC 1918 Addresses.
4.2.7 Preventing and Tracing Denial of Service (DoS) Attacks.
4.3 Protecting Your Own and Others’ Network Devices.
5 Routing Protocols.
5.1 Why Different Routing Protocols?
5.2 Interior Gateway Protocols (IGP).
5.2.1 Open Shortest Path First (OSPF).
5.2.2 Authentication of OSPF.
5.2.3 Stub Areas, Not So Stubby Areas (NSSA) and Totally Stubby Areas.
5.2.4 OSPF Graceful Restart.
5.2.5 OSPFv3.
5.2.6 Intermediate System to Intermediate System (IS-IS).
5.2.7 Authentication of IS-IS.
5.2.8 IS-IS Graceful Restart.
5.2.9 Routing Information Protocol (RIP).
5.2.10 Interior Gateway Routing Protocol (IGRP) and Enhanced Interior Gateway Routing Protocol (EIGRP).
5.2.11 Diffusing Update Algorithm (DUAL).
5.2.12 Stuck-in-Active.
5.2.13 Why use EIGRP?
5.3 Exterior Protocols.
5.3.1 Border Gateway Protocol (BGP).
5.3.2 Authentication of BGP.
5.3.3 BGP Graceful Restart.
5.3.4 Multiprotocol BGP.
6 Routing Policy.
6.1 What is Policy For?
6.1.1 Who Pays Whom?
6.2 Implementing Scalable Routing Policies.
6.3 How is Policy Evaluated?
6.3.1 AND or OR?
6.3.2 The Flow of Policy Evaluation.
6.4 Policy Matches.
6.5 Policy Actions.
6.5.1 The Default Action.
6.5.2 Accept/Permit, Reject/Deny, and Discard.
6.6 Policy Elements.
6.7 AS Paths.
6.8 Prefix Lists and Route Lists.
6.9 Internet Routing Registries.
6.10 Communities.
6.11 Multi-Exit Discriminator (MED).
6.12 Local Preference.
6.13 Damping.
6.14 Unicast Reverse Path Forwarding.
6.15 Policy Routing/Filter-Based Forwarding.
6.16 Policy Recommendations.
6.16.1 Policy Recommendations for Customer Connections.
6.16.2 Policy Recommendations for Peering Connections.
6.16.3 Policy Recommendations for Transit Connections.
6.17 Side Effects of Policy.
7 Multiprotocol Label Switching (MPLS).
7.1 Traffic Engineering.
7.2 Label Distribution Protocols.
7.3 Tag Distribution Protocol (TDP).
7.4 Label Distribution Protocol (LDP).
7.4.1 LDP Graceful Restart.
7.5 RSVP with Traffic Engineering Extensions (RSVP-TE).
7.5.1 RSVP-TE Graceful Restart.
7.5.2 OSPF with Traffic Engineering Extensions (OSPF-TE).
7.5.3 IS-IS with Traffic Engineering Extensions (IS-IS-TE).
7.6 Fast Reroute.
7.7 Integrating ATM and IP Networks.
7.8 Generalized MPLS (GMPLS).
8 Virtual Private Networks (VPNs).
8.1 VPNs at Layer 3.
8.1.1 Layer 3 VPN (RFC 2547bis).
8.1.2 Generic Router Encapsulation (GRE).
8.1.3 IPsec.
8.2 VPNs at Layer 2.
8.2.1 Circuit Cross-Connect (CCC).
8.2.2 Translational Cross-Connect (TCC).
8.2.3 Martini (Layer 2 circuits).
8.2.4 Virtual Private Wire Service (VPWS).
8.2.5 Virtual Private LAN Service (VPLS).
8.2.6 Layer 2 Tunnelling Protocol (L2TP).
9 Class of Service and Quality of Service.
9.1 Design and Architectural Issues of CoS/QoS.
9.2 CoS/QoS Functional Elements.
9.2.1 Classification.
9.2.2 Congestion Notification Mechanisms.
9.2.3 Congestion Avoidance Mechanisms.
9.2.4 Queueing Strategies.
9.3 QoS Marking Mechanisms.
9.3.1 Layer 2 Marking.
9.3.2 Layer 3 QoS.
9.3.3 MPLS EXP.
9.4 Integrating QoS at Layer 2, in IP and in MPLS.
9.4.1 DiffServ Integration with MPLS.
10 Multicast.
10.1 Multicast Forwarding at Layer 2.
10.1.1 Multicast on Ethernet and FDDI.
10.1.2 Multicast Over Token Ring.
10.1.3 Internet Group Management Protocol (IGMP).
10.1.4 IGMP Snooping.
10.1.5 PIM/DVMRP Snooping.
10.1.6 Immediate Leave Processing.
10.1.7 Cisco Group Management Protocol (CGMP).
10.2 Multicast Routing.
10.2.1 Reverse Path Forwarding (RPF) Check.
10.2.2 Dense Mode Protocols.
10.2.3 Sparse Mode Protocols.
10.2.4 Multicast Source Discovery Protocol (MSDP).
10.2.5 Multiprotocol BGP.
10.2.6 Multicast Scoping.
11 IPv6.
11.1 Evolution and Revolution.
11.2 IPv6 Headers.
11.3 IPv6 Addressing.
11.3.1 Hierarchical Allocations.
11.3.2 Address Classes.
11.4 Stateless Autoconfiguration.
11.5 Domain Name System (DNS).
11.6 Transition Mechanisms.
11.6.1 Dual Stack.
11.6.2 Network Address Translation—Protocol Translation.
11.6.3 Tunnelling IPv6 in IPv4.
11.7 Routing in IPv6.
11.7.1 IS-IS for IPv6.
11.7.2 OSPFv3.
11.7.3 RIPng.
11.7.4 Multiprotocol BGP.
11.8 Multicast in IPv6.
11.9 IPv6 Security.
11.10 Mobility in IPv6.
12 Complete Example Configuration Files (IOS and JUNOS Software).
12.1 Core Router (P) Running MPLS TE Supporting LDP Tunnelled Through RSVP-TE, No Edge Interfaces, iBGP Only, Multicast RP (Anycast Static) MSDP, PIM-SM (JUNOS).
12.2 Core Router (P) Running MPLS TE Supporting LDP Tunnelled Through RSVP-TE, No Edge Interfaces, iBGP Only, Multicast RP (Anycast Static) MSDP, PIM-SM (IOS).
12.3 Aggregation Router (PE) Running MPLS L3 and L2VPN Over LDP, BGP Policy to Customers, MBGP, PIM-SM (JUNOS).
12.4 Aggregation Router (PE) Running MPLS L3 and L2VPN Over LDP, BGP Policy to Customers, MBGP, PIM-SM (IOS).
12.5 Border Router Running MPLS with LDP, BGP Policy to Peers, MBGP, PIM-SM (JUNOS).
12.6 Border Router Running MPLS with LDP, BGP Policy to Peers, MBGP, PIM-SM (IOS).
12.7 Transit Router Running MPLS with LDP, BGP Policy to Upstream Transit Providers, MBGP, PIM-SM (JUNOS).
12.8 Transit Router Running MPLS with LDP, BGP Policy to Upstream Transit Providers, MBGP, PIM-SM (IOS).
References.
Index.
商品描述(中文翻譯)
描述:
當今競爭激烈的網路市場要求利用現有資源提供最大範圍的服務,而不是建造更大、更複雜的網路,而是更智慧、更具可擴展性的基礎設施。這並不是一件容易的事。
挑戰在於發展現有網路,以最大化其盈利能力。由於現有基礎設施很少是同質的,因此需要採用多供應商的方法。討論不能僅僅根植於理論,而必須突顯實際設計和真實開發。
Guy Davies 的這本寶貴參考工具是多年來設計和開發實際可擴展系統的經驗結晶,適用於服務提供商和企業網路。它全面展示了如何構建可擴展的網路、應避免的陷阱,以及為工程師構建和運營 IP 網路所提供的最成功的機制的彙編。
《設計與開發可擴展的 IP 網路》:
- 記錄了服務提供商和企業網路的實用擴展機制,並使用實際的配置範例進行說明。
- 建議政策選擇,並在商業環境的背景下解釋它們。
- 為基於作者對 Juniper Networks 組件和 Cisco Systems 路由器的熟悉程度的工程師提供參考。
- 基於作者在美國、歐洲及亞太地區與大型網路合作的經驗。
這本無與倫比的網路擴展參考書適合網路設計師、架構師、工程師和管理人員。它也將成為技術意識強的銷售和市場人員及服務工程師的權威指南。對於研究 JNCIE 和 CCIE 考試的研究生和計算機及通訊工程的最後一年學生來說,這是一本寶貴的資源。
目錄:
- 圖表清單。
- 表格清單。
- 關於作者。
- 致謝。
- 縮寫。
- 介紹。
- 1 硬體設計。
- 1.1 路由與轉發功能的分離。
- 1.2 建構模組。
- 1.2.1 控制模組。
- 1.2.2 轉發模組。
- 1.2.3 不間斷轉發。
- 1.2.4 有狀態故障轉移。
- 1.3 流量是否流動?
- 1.4 硬體冗餘,單機箱或多機箱。
- 2 傳輸媒介。
- 2.1 最大傳輸單位 (MTU)。
- 2.1.1 路徑 MTU 探測。
- 2.1.2 埠密度。
- 2.1.3 通道化介面。
- 2.2 以太網。
- 2.2.1 地址解析協定 (ARP)。
- 2.2.2 MTU。
- 2.3 非同步傳輸模式 (ATM)。
- 2.4 封包在 SONET 上 (POS)。
- 2.5 SRP/RPR 和 DPT。
- 2.5.1 智能保護切換。
- 2.6 (分數) E1/T1/E3/T3。
- 2.7 無線傳輸。
- 2.7.1 法規限制。
- 2.7.2 干擾。
- 2.7.3 障礙物。
- 2.7.4 大氣條件。
- 2.7.5 如果情況如此糟糕...
- 3 路由器和網路管理。
- 3.1 外部帶外 (OOB) 網路的重要性。
- 3.1.1 管理以太網。
- 3.1.2 控制台埠。
- 3.1.3 輔助 (Aux) 埠。
- 3.1.4 遠端電源管理。
- 3.1.5 不間斷電源供應 (UPS)。
- 3.2 網路時間協定 (NTP)。
- 3.3 記錄。
- 3.4 簡單網路管理協定 (SNMP)。
- 3.4.1 SNMPv1、v2c 和 v3。
- 3.5 遠端監控 (RMON)。
- 3.6 網路管理系統。
- 3.6.1 CiscoWorks。
- 3.6.2 JUNOScope。
- 3.6.3 非專有系統。
- 3.7 配置管理。
- 3.7.1 同時版本系統 (CVS)。
- 3.7.2 腳本及其他自動配置分發和存儲機制。
- 3.8 升級或不升級。
- 3.8.1 軟體發佈週期。
- 3.9 容量規劃技術。
- 4 網路安全。
- 4.1 確保對網路設備的訪問安全。
- 4.1.1 物理安全。
- 4.1.2 認證、授權和會計 (AAA)。
- 4.2 確保對網路基礎設施的訪問安全。
- 4.2.1 用戶、主機和伺服器的認證。
- 4.2.2 資訊加密。
- 4.2.3 訪問工具和協定。
- 4.2.4 IP 安全 (IPsec)。
- 4.2.5 訪問控制列表。
- 4.2.6 RFC 1918 地址。
- 4.2.7 防止和追蹤拒絕服務 (DoS) 攻擊。
- 4.3 保護自己和他人的網路設備。
- 5 路由協定。
- 5.1 為什麼有不同的路由協定?
- 5.2 內部閘道協定 (IGP)。
- 5.2.1 開放最短路徑優先 (OSPF)。
- 5.2.2 OSPF 的認證。
- 5.2.3 Stub 區域、非 Stub 區域 (NSSA) 和完全 Stub 區域。
- 5.2.4 OSPF 優雅重啟。
- 5.2.5 OSPFv3。
- 5.2.6 介面系統到介面系統 (IS-IS)。
- 5.2.7 IS-IS 的認證。
- 5.2.8 IS-IS 優雅重啟。
- 5.2.9 路由資訊協定 (RIP)。
- 5.2.10 內部閘道路由協定 (IGRP) 和增強型內部閘道路由協定 (EIGRP)。
- 5.2.11 擴散更新演算法 (DUAL)。
- 5.2.12 卡住在活動中。
- 5.2.13 為什麼使用 EIGRP?
- 5.3 外部協定。
- 5.3.1 邊界閘道協定 (BGP)。
- 5.3.2 BGP 的認證。
- 5.3.3 BGP 優雅重啟。
- 5.3.4 多協定 BGP。
- 6 路由政策。
- 6.1 政策的目的為何?
- 6.1.1 誰付給誰?
- 6.2 實施可擴展的路由政策。
- 6.3 政策如何評估?
- 6.3.1 AND 或 OR?
- 6.3.2 政策評估的流程。
- 6.4 政策匹配。
- 6.5 政策行動。
- 6.5.1 預設行動。
- 6.5.2 接受/允許、拒絕/否定和丟棄。
- 6.6 政策元素。
- 6.7 AS 路徑。
- 6.8 前綴列表和路由列表。
- 6.9 網際網路路由登記處。
- 6.10 社群。
- 6.11 多出口區分符 (MED)。
- 6.12 本地偏好。
- 6.13 減震。
- 6.14 單播反向路徑轉發。
- 6.15 政策路由/基於過濾的轉發。
- 6.16 政策建議。
- 6.16.1 客戶連接的政策建議。
- 6.16.2 對等連接的政策建議。
- 6.16.3 過境連接的政策建議。
- 6.17 政策的副作用。
- 7 多協定標籤交換 (MPLS)。
- 7.1 流量工程。
- 7.2 標籤分發協定。
- 7.3 標籤分發協定 (TDP)。
- 7.4 標籤分發協定 (LDP)。
- 7.4.1 LDP 優雅重啟。
- 7.5 RSVP 與流量工程擴展 (RSVP-TE)。