買這商品的人也買了...
-
$480$408 -
$880$695 -
$580$458 -
$650$507 -
$560$437 -
$550$468 -
$270$213 -
$420$399 -
$480$408 -
$580$458 -
$580$458 -
$580$493 -
$800$760 -
$880$695 -
$780$663 -
$620$409 -
$530$350 -
$750$495 -
$99The New Rules of Marketing and PR: How to Use Social Media, Blogs, News Releases, Online Video, and Viral Marketing to Reach Buyers Directly, 2/e (Paperback)
-
$750$495 -
$480$408 -
$720$569 -
$580$458 -
$450$383 -
$650$514
相關主題
商品描述
Description
Over the last fifty years, the ability to carry out analysis as a precursor to decision making in engineering design has increased dramatically. In particular, the advent of modern computing systems and the development of advanced numerical methods have made computational modelling a vital tool for producing optimized designs.
This text explores how computer-aided analysis has revolutionized aerospace engineering, providing a comprehensive coverage of the latest technologies underpinning advanced computational design. Worked case studies and over 500 references to the primary research literature allow the reader to gain a full understanding of the technology, giving a valuable insight into the world’s most complex engineering systems.
Key Features:
- Includes background information on the history of aerospace design and established optimization, geometrical and mathematical modelling techniques, setting recent engineering developments in a relevant context.
- Examines the latest methods such as evolutionary and response surface based optimization, adjoint and numerically differentiated sensitivity codes, uncertainty analysis, and concurrent systems integration schemes using grid-based computing.
- Methods are illustrated with real-world applications of structural statics, dynamics and fluid mechanics to satellite, aircraft and aero-engine design problems.
Senior undergraduate and postgraduate engineering students taking courses in aerospace, vehicle and engine design will find this a valuable resource. It will also be useful for practising engineers and researchers working on computational approaches to design.
Table of Contents
Foreword.
Preface.
Acknowledgments.
I Preliminaries.
1 Introduction.
1.1 Objectives.
1.2 Road Map –What is Covered and What is Not.
1.3 An Historical Perspective on Aerospace Design.
1.4 Traditional Manual Approaches to Design and Design Iteration, Design Teams.
1.5 Advances in Modeling Techniques: Computational Engineering.
1.6 Trade-offs in Aerospace System Design.
1.7 Design Automation, Evolution and Innovation.
1.8 Design Search and Optimization (DSO).
1.9 The Take-up of Computational Methods.
2 Design-oriented Analysis.
2.1 Geometry Modeling and Design Parameterization.
2.2 Computational Mesh Generation.
2.3 Analysis and Design of Coupled Systems.
3 Elements of Numerical Optimization.
3.1 Single Variable Optimizers – Line Search.
3.2 Multivariable Optimizers.
3.3 Constrained Optimization.
3.4 Metamodels and Response Surface Methods.
3.5 Combined Approaches – Hybrid Searches, Metaheuristics.
3.6 Multiobjective Optimization.
3.7 Robustness.
II Sensitivity Analysis and Approximation Concepts.
4 Sensitivity Analysis.
4.1 Finite-difference Methods.
4.2 Complex Variable Approach.
4.3 Direct Methods.
4.4 Adjoint Methods.
4.5 Semianalytical Methods.
4.6 Automatic Differentiation.
4.7 Mesh Sensitivities for Complex Geometries.
4.8 Sensitivity of Optima to Problem Parameters.
4.9 Sensitivity Analysis of Coupled Systems.
4.10 Comparison of Sensitivity Analysis Techniques.
5 General Approximation Concepts and Surrogates.
5.1 Local Approximations.
5.2 Multipoint Approximations.
5.3 Black-box Modeling: a Statistical Perspective.
5.4 Generalized Linear Models.
5.5 Sparse Approximation Techniques.
5.6 Gaussian Process Interpolation and Regression.
5.7 Data Parallel Modeling.
5.8 Design of Experiments (DoE).
5.9 Visualization and Screening.
5.10 Black-box Surrogate Modeling in Practice.
6 Physics-based Approximations.
6.1 Surrogate Modeling using Variable-fidelity Models.
6.2 An Introduction to Reduced Basis Methods.
6.3 Reduced Basis Methods for Linear Static Reanalysis.
6.4 Reduced Basis Methods for Reanalysis of Eigenvalue Problems.
6.5 Reduced Basis Methods for Nonlinear Problems.
III Frameworks for Design Space Exploration.
7 Managing Surrogate Models in Optimization.
7.1 Trust-region Methods.
7.2 The Space Mapping Approach.
7.3 Surrogate-assisted Optimization using Global Models.
7.4 Managing Surrogate Models in Evolutionary Algorithms.
7.5 Concluding Remarks.
8 Design in the Presence of Uncertainty.
8.1 Uncertainty Modeling and Representation.
8.2 Uncertainty Propagation.
8.3 Taguchi Methods.
8.4 The Welch–Sacks Method.
8.5 Design for Six.
8.6 Decision-theoretic Formulations.
8.7 Reliability-based Optimization.
8.8 Robust Design using Information-gap Theory.
8.9 Evolutionary Algorithms for Robust Design.
8.10 Concluding Remarks.
9 Architectures for Multidisciplinary Optimization.
9.1 Preliminaries.
9.2 Fully Integrated Optimization (FIO).
9.3 System Decomposition and Optimization.
9.4 Simultaneous Analysis and Design (SAND).
9.5 Distributed Analysis Optimization Formulation.
9.6 Collaborative Optimization.
9.7 Concurrent Subspace Optimization.
9.8 Coevolutionary Architectures.
IV Case Studies.
10 A Problem in Satellite Design 391
10.1 A Problem in Structural Dynamics.
10.2 Initial Passive Redesign in Three Dimensions.
10.3 A Practical Three-dimensional Design.
10.4 Active Control Measures.
10.5 Combined Active and Passive Methods.
10.6 Robustness Measures.
10.7 Adjoint-based Approaches.
11 Airfoil Section Design.
11.1 Analysis Methods.
11.2 Drag-estimation Methods.
11.3 Calculation Methods Adopted.
11.4 Airfoil Parameterization.
11.5 Multiobjective Optimization.
12 Aircraft Wing Design – Data Fusion between Codes 447
12.1 Introduction.
12.2 Overall Wing Design.
12.3 An Example and Some Basic Searches.
12.4 Direct Multifidelity Searches.
12.5 Response Surface Modeling.
12.6 Data Fusion.
12.7 Conclusions.
13 Turbine Blade Design (I) – Guide-vane SKE Control.
13.1 Design of Experiment Techniques, Response Surface Models and Model
Refinement.
13.2 Initial Design.
13.3 Seven-variable Trials without Capacity Constraint.
13.4 Twenty-one-variable Trial with Capacity Constraint.
13.5 Conclusions.
14 Turbine Blade Design (II) – Fir-tree Root Geometry.
14.1 Introduction.
14.2 Modeling and Optimization of Traditional Fir-tree Root Shapes.
14.3 Local Shape Parameterization using NURBS.
14.4 Finite Element Analysis of the Fir-tree Root.
14.5 Formulation of the Optimization Problem and Two-stage Search Strategy.
14.6 Optimum Notch Shape and Stress Distribution.
14.7 Summary.
15 Aero-engine Nacelle Design Using the Geodise Toolkit.
15.1 The Geodise System.
15.2 Gas-turbine Noise Control.
15.3 Conclusions.
16 Getting the Optimization Process Started.
16.1 Problem Classification.
16.2 Initial Search Process Choice.
16.3 Assessment of Initial Results.
Bibliography.
Index.
商品描述(中文翻譯)
**描述**
在過去五十年中,進行分析以作為工程設計決策的前置作業的能力大幅提升。特別是現代計算系統的出現和先進數值方法的發展,使得計算建模成為產生最佳化設計的重要工具。
本書探討了電腦輔助分析如何徹底改變航空航天工程,全面涵蓋了支撐先進計算設計的最新技術。透過實際案例研究和超過500個主要研究文獻的參考,讀者能夠全面理解這項技術,並深入了解世界上最複雜的工程系統。
**主要特點:**
- 包含航空航天設計歷史的背景資訊,以及已建立的最佳化、幾何和數學建模技術,將近期的工程發展置於相關的背景中。
- 檢視最新的方法,如基於進化和響應面優化、伴隨和數值微分靈敏度程式、不確定性分析,以及使用基於網格的計算的並行系統整合方案。
- 方法透過結構靜力學、動力學和流體力學在衛星、飛機和航空發動機設計問題中的實際應用進行說明。
高年級本科生和研究生工程學生在航空航天、車輛和發動機設計課程中將會發現這是一本有價值的資源。對於從事計算設計方法的實務工程師和研究人員來說,這本書也將非常有用。
**目錄**
**前言**
**序言**
**致謝**
**I 初步知識**
1. 介紹
1.1 目標
1.2 路線圖 - 涵蓋的內容與未涵蓋的內容
1.3 航空航天設計的歷史觀
1.4 傳統手動設計方法與設計迭代、設計團隊
1.5 建模技術的進展:計算工程
1.6 航空系統設計中的權衡
1.7 設計自動化、演變與創新
1.8 設計搜尋與最佳化 (DSO)
1.9 計算方法的採用
**2 設計導向分析**
2.1 幾何建模與設計參數化
2.2 計算網格生成
2.3 耦合系統的分析與設計
**3 數值最佳化的元素**
3.1 單變量最佳化器 - 線性搜尋
3.2 多變量最佳化器
3.3 約束最佳化
3.4 元模型與響應面方法
3.5 結合方法 - 混合搜尋、元啟發式
3.6 多目標最佳化
3.7 穩健性
**II 靈敏度分析與近似概念**
**4 靈敏度分析**
4.1 有限差分方法
4.2 複變數方法
4.3 直接方法
4.4 伴隨方法
4.5 半解析方法
4.6 自動微分
4.7 複雜幾何的網格靈敏度
4.8 最優解對問題參數的靈敏度
4.9 耦合系統的靈敏度分析
4.10 靈敏度分析技術的比較
**5 一般近似概念與替代模型**
5.1 局部近似
5.2 多點近似
5.3 黑箱建模:統計觀點
5.4 廣義線性模型
5.5 稀疏近似技術
5.6 高斯過程插值與回歸
5.7 數據並行建模
5.8 實驗設計 (DoE)
5.9 可視化與篩選
5.10 實踐中的黑箱替代建模
**6 基於物理的近似**
6.1 使用變量保真度模型的替代建模
6.2 簡化基底方法介紹
6.3 線性靜態重分析的簡化基底方法
6.4 特徵值問題的簡化基底方法
6.5 非線性問題的簡化基底方法
**III 設計空間探索的框架**
**7 在最佳化中管理替代模型**
7.1 信任區域方法
7.2 空間映射方法
7.3 使用全局模型的替代輔助最佳化
7.4 在進化算法中管理替代模型
7.5 總結
**8 在不確定性下的設計**
8.1 不確定性建模與表示
8.2 不確定性傳播
8.3 田口方法
8.4 Welch–Sacks 方法
8.5 六西格瑪設計
8.6 決策理論公式
8.7 基於可靠性的最佳化
8.8 使用信息缺口理論的穩健設計
8.9 用於穩健設計的進化算法
8.10 總結
**9 多學科最佳化的架構**
9.1 初步知識
9.2 完全整合最佳化 (FIO)
9.3 系統分解與最佳化
9.4 同時分析與設計 (SAND)
9.5 分佈式分析最佳化公式
9.6 協作最佳化
9.7 並行子空間最佳化
9.8 共同演化架構
**IV 案例研究**
**10 衛星設計中的一個問題**
10.1 結構動力學中的一個問題
10.2 三維初步被動重新設計
10.3 實用的三維設計
10.4 主動控制措施
10.5 結合主動與被動方法
10.6 穩健性措施
10.7 基於伴隨的方案
**11 翼型截面設計**
11.1 分析方法
11.2 拖曳估算方法
11.3 採用的計算方法
11.4 翼型參數化
11.5 多目標最佳化
**12 飛機機翼設計 - 程式間的數據融合**
12.1 介紹
12.2 整體機翼設計
12.3 一個範例與一些基本搜尋
12.4 直接多保真度搜尋
12.5 響應面建模
12.6 數據融合
12.7 結論
**13 渦輪葉片設計 (I) - 導向葉片 SKE 控制**
13.1 實驗設計技術、響應面模型與模型精煉
13.2 初步設計
13.3 無容量約束的七變量試驗
13.4 有容量約束的二十一變量試驗
13.5 結論
**14 渦輪葉片設計 (II) - 鳳尾根幾何**
14.1 介紹
14.2 傳統鳳尾根形狀的建模與最佳化
14.3 使用 NURBS 的局部形狀參數化
14.4 鳳尾根的有限元素分析
14.5 最佳化問題的公式化與兩階段搜尋策略
14.6 最佳缺口形狀與應力分佈
14.7 總結
**15 航空發動機艙設計使用 Geodise 工具包**
15.1 Geodise 系統
15.2 燃氣渦輪噪音控制
15.3 結論
**16 開始最佳化過程**
16.1 問題分類
16.2 初步搜尋過程選擇
16.3 初步結果的評估
**參考文獻**
**索引**