Statistical and Machine Learning Approaches for Network Analysis (Hardcover)
暫譯: 網路分析的統計與機器學習方法 (精裝版)
Matthias Dehmer, Subhash C. Basak
- 出版商: Wiley
- 出版日期: 2012-08-07
- 售價: $4,860
- 貴賓價: 9.5 折 $4,617
- 語言: 英文
- 頁數: 344
- 裝訂: Hardcover
- ISBN: 0470195150
- ISBN-13: 9780470195154
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Explore the multidisciplinary nature of complex networks through machine learning techniques
Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks.
Comprised of chapters written by internationally renowned researchers in the field of interdisciplinary network theory, the book presents current and classical methods to analyze networks statistically. Methods from machine learning, data mining, and information theory are strongly emphasized throughout. Real data sets are used to showcase the discussed methods and topics, which include:
- A survey of computational approaches to reconstruct and partition biological networks
- An introduction to complex networks—measures, statistical properties, and models
- Modeling for evolving biological networks
- The structure of an evolving random bipartite graph
- Density-based enumeration in structured data
- Hyponym extraction employing a weighted graph kernel
Statistical and Machine Learning Approaches for Network Analysis is an excellent supplemental text for graduate-level, cross-disciplinary courses in applied discrete mathematics, bioinformatics, pattern recognition, and computer science. The book is also a valuable reference for researchers and practitioners in the fields of applied discrete mathematics, machine learning, data mining, and biostatistics.
商品描述(中文翻譯)
透過機器學習技術探索複雜網絡的多學科特性
網絡分析的統計與機器學習方法提供了一個可接觸的框架,通過整合已知和新穎的圖類和圖度量方法來結構性地分析圖形。這本書通過提供基於實驗數據的不同方法,獨特地將自己與當前文獻區分開來,探索機器學習技術在各類複雜網絡中的應用。
本書由國際知名的跨學科網絡理論研究者撰寫的章節組成,展示了當前和經典的統計網絡分析方法。書中強調了來自機器學習、數據挖掘和信息理論的方法。使用真實數據集來展示所討論的方法和主題,包括:
- 重建和劃分生物網絡的計算方法調查
- 複雜網絡的介紹—度量、統計特性和模型
- 演變生物網絡的建模
- 演變隨機二部圖的結構
- 基於密度的結構化數據枚舉
- 使用加權圖核的下位詞提取
網絡分析的統計與機器學習方法是應用離散數學、生物信息學、模式識別和計算機科學的研究生跨學科課程的優秀補充教材。這本書對於應用離散數學、機器學習、數據挖掘和生物統計學領域的研究人員和從業者來說,也是一本寶貴的參考資料。