Electromagnetic Theory
暫譯: 電磁理論

Julius Adams Stratton

  • 出版商: Wiley
  • 出版日期: 2007-01-22
  • 售價: $5,740
  • 貴賓價: 9.5$5,453
  • 語言: 英文
  • 頁數: 640
  • 裝訂: Hardcover
  • ISBN: 0470131535
  • ISBN-13: 9780470131534
  • 下單後立即進貨 (約1~3週)

買這商品的人也買了...

相關主題

商品描述

Description

This book is an electromagnetics classic. Originally published in 1941, it has been used by many generations of students, teachers, and researchers ever since. Since it is classic electromagnetics, every chapter continues to be referenced to this day.

This classic reissue contains the entire, original edition first published in 1941. Additionally, two new forewords by Dr. Paul E. Gray (former MIT President and colleague of Dr. Stratton) and another by Dr. Donald G. Dudley, Editor of the IEEE Press Series on E/M Waves on the significance of the book's contribution to the field of Electromagnetics.

 

Table of Contents

Preface

CHAPTER I: THE FIELD EQUATIONS.

MAXWELL'S EQUATIONS.

1.1 The Field Vectors.

1.2 Charge and Current.

1.3 Divergence of the Field Vectors.

1.4 Integral Form of the Field Equations.

MACROSCOPIC PROPERTIES OF MATTER.

1.5 The Inductive Capacities c and p.

1.6 Electric and Magnetic Polarization.

1.7 Conducting Media.

UNITS AND DIMENSIONS.

1.8 M.K.S. or Giorgi System.

THE ELECTROMAGNETIC POTENTIALS.

1.9 Vector and Scalar Potentials.

1.10 Conducting Media.

1.11 Hertz Vectors, or Polarization Potentials.

1.12 Complex Field Vectors and Potentials.

BOUNDARY CONDITIONS.

1.13 Discontinuities in the Field Vectors.

COORDINATE SYSTEMS.

1.14 Unitary and Reciprocal Vectors.

1.15 Differential Operators.

1.16 Orthogonal Systems.

1.17 Field Equations in General Orthogonal Coordinates.

1.18 Properties of Some Elementary Systems.

THE FIELD SENSORS.

1.19 Orthogonal Transformations and Their Invariants.

1.20 Elements of Tensor Analysis.

1.21 Space-time Symmetry of the Field Equations.

1.22 The Lorentz Transformation.

1.23 Transformation of the Field Vectors to Moving Systems.

CHAPTER II: STRESS AND ENERGY.

STRESS AND STRAIN IN ELASTIC MEDIA.

2.1 Elastic Stress Tensor.

2.2 Analysis of Strain.

2.3 Elastic Energy and the Relations of Stress to Strain.

ELECTROMAGNETIC FORCES ON CHARGES AND CURRENTS.

2.4 Definition of the Vectors E and B.

2.5 Electromagnetic Stress Tensor in Free Space.

2.6 Electromagnetic Momentum.

2.7 Electrostatic Energy as a Function of Charge Density.

2.8 Electrostatic Energy as a Function of Field Intensity.

2 3 A Theorem on Vector Fields.

2.10 Energy of a Dielectric Body in an Electrostatic Field.

2.11 Thornson's Theorem.

2.12 Earnshaw's Theorem.

2.13 Theorem on the Energy of Uncharged Conductors.

MAGNETOSTATIC ENERGY.

2.14 Magnetic Energy of Stationary Currents.

2.15 Magnetic Energy as a Function of Field Intensity.

2.16 Ferromagnetic Materials.

2.17 Energy of a Magnetic Body in a Magnetostatic Field.

2.18 Potential Energy of a Permanent Magnet.

ENERGY FLOW.

2.19 Poynting's Theorem.

2.20 Complex Poynting Vector.

FORCES ON A DIELECTRIC IN AN ELECTROSTATIC FIELD.

2.21 Body Forces in Fluids.

2.22 Body Forces in Solids.

2.23 The Stress Tensor.

2.24 Surfaces of Discontinuity.

2.25 Electrostriction.

2.26 Force on a Body Immersed in a Fluid.

FORCES IN THE MAGNETOSTATIC FIELD.

2.27 Nonferromagnetic Materials.

2.28 Ferromagnetic Materials.

FORCES IN THE ELECTROMAGNETIC FIELD.

2.29 Force on a Body Immersed in a Fluid.

CHAPTER III: THE ELECTROSTATIC FIELD.

3.1 Equations of Field and Potential.

3.2 Boundary Conditions.

CALCULATION OF THE FIELD FROM THE CHARGE DISTRIBUTION.

3.3 Green's Theorem.

3.4 Integration of Poisson's Equation.

3.5 Behavior at Infinity.

3.6 Coulomb Field.

3.7 Convergence of Integrals.

EXPANSION OF THE POTENTIAL IN SPHERICAL HARMONICS.

3.8 Axial Distributions of Charge.

3.9 The Dipole.

3.10 Axial Multipoles.

3.11 Arbitrary Distributions of Charge.

3.12 General Theory of Multipoles.

DIELECTRIC POLARIZATION.

3.13 Interpretation of the Vectors P and IT.

3.14 Volume Distributions of Charge and Dipole Moment.

3.15 Single-layer Charge Distributions.

3.16 Double-layer Distributions.

3.17 Interpretation of Green's Theorem.

3.18 Images.

BOUNDARY-VALUE PROBLEMS.

3.19 Formulation of Electrostatic Problems.

3.20 Uniqueness of Solution.

3.21 Solution of Laplace's Equation.

PROBLEM OF THE SPHERE.

3.22 Conducting Sphere in Field of a Point Charge

3.23 Dielectric Sphere in Field of a Point Charge

3.24 Sphere in a Parallel Field

3.25 Free Charge on a Conducting Ellipsoid.

3.26 Conducting Ellipsoid in a Parallel Field.

3.27 Dielectric Ellipsoid in a Parallel Field.

3.28 Cavity Definitions of E and D.

3.29 Torque Exerted on an Ellipsoid.

CHAPTER IV: THE MAGNETOSTATIC FIELD.

GENERAL PROPERTIES OF A MAGNETOSTATFIC FIELD.

4.1 Field Equations and the Vector Potential.

4.2 Scalar Potential.

4.3 Poisson's Analysis.

CALCULATION OF THE FIELD OF A CURRENT DISTRIBUTION.

4.4 Biot-Savart Law.

4.5 Expansion of the Vector Potential.

4.6 The Magnetic Dipole.

4.7 Magnetic Shells.

A DIGRESSION ON UNITS AND DIMENSIONS.

4.8 Fundamental Systems.

4.9 Coulomb's Law for Magnetic Matter.

MAGNETIC POLARIZATION. 

4.10 Equivalent Current Distributions

4.11 Field of hfagnetized Rods and Spheres

DISCONTINUITIES OF THE VECTORS A AND B.

4.12 Surface Distributions of Current.

4.13 Surface Distributions of Magnetic Moment.

INTEGRATION OF THE EQUATION.

4.14 Vector Analogue of Green's Theorem.

4.15 Application to the Vector Potential.

BOUNDARY-VALUE PROBLEMS.

4.16 Formulation of the Magnetostatic Problem.

4.17 Uniqueness of Solution.

PROBLEM OF THE ELLIPSOID.

4.18 Field of a Uniformly Magnetized Ellipsoid.

4.19 Magnetic Ellipsoid in a Parallel Field.

CYLINDER IN A PARALLEL FIELD.

4.20 Calculation of the Field.

4.21 Force Exerted on the Cylinder.

PROBLEMS.

CHAPTER V: PLANE WAVES IN UNBOUNDED ISOTROPIC MEDIA.

PROPAGATION OF PLANE WAVES.

5.1 Equations of a One-dimensional Field.

5.2 Plane Waves Harmonic in Time.

5.3 Plane Waves Harmonic in Space.

5.4 Polarization.

5.5 Energy Flow.

5.6 Impedance.

GENERAL SOLUTIONS OF THE ONE-DIMENSION WAVE EQUATION.

5.7 Elements of Fourier Analysis.

5.8 General Solution of the One-dimensional Wave Equation in a Nondissipative Medium.

5.9 Dissipative Medium; Prescribed Distribution in Time.

5.10 Dissipative Medium; Prescribed Distribution in Space.

5.11 Discussion of a Numerical Example.

5.12 Elementary Theory of the Laplace Transformation.

5.13 Application of the Laplace Transformation to Maxwell's Equations.18

DISPERSION.

5.14 Dispersion in Dielectrics.

5.15 Dispersion in Metals.

5.16 Propagation in an Ionized Atmosphere.

VELOCITIES OF PROPAGATION.

5.17 Group Velocity.

5.18 Wave-front and Signal Velocities.

PROBLEMS.

CHAPTER VI: CYLINDRICAL WAVES.

EQUATIONS OF A CYLINDRICAL FIE LD.

6.1 Representation by Hertz Vectors.

6.2 Scalar and Vector Potentials.

6.3 Impedances of Harmonic Cylindrical Fields.

WAVE FUNCTIONS OF THE CIRCULAR CYLINDER. 

6.4 Elementary Waves.

6.5 Properties of the Functions Zp(p).

6.6 The Field of Circularly Cylindrical Wave Functions.

6.7 Construction from Plane Wave Solutions.

6.8 Integral Representations of the Functions Zp(p).

6.9 Fourier-Bessel Integrals.

6.10 Representation of a Plane Wave.

6.11 The Addition Theorem for Circularly Cylindrical Waves.

WAVE FUNCTIONS OF THE ELLIPTIC CYLINDER.

6.12 Elementary Waves.

6.13 Integral Representations.

6.14 Expansion of Plane and Circular Waves.

PROBLEMS.

CHAPTER VII: SPHERICAL WAVES.

THE VECTOR WAVE EQUATION.

7.1 A Fundamental Set of Solutions.

7.2 Application to Cylindrical Coordinates.

THE SCALAR WAVE EQUATION IN SPHERICAL COORDINATES.

7.3 Elementary Spherical Waves.

7.4 Properties of the Radial Functions.

7.5 Addition Theorem for the Legendre Polynomials.

7.6 Expansion of Plane Waves.

7.7 Integral Representations.

7.8 A Fourier-Bessel Integral.

7.9 Expansion of a Cylindrical Wave Function.

7.10 Addition Theorem for zp(kR).

THE VECTOR WAVE EQUATION IN SPHERICACL COORDINATES.

7.11 Spherical Vector Wave Functions.

7.12 Integral Representations.

7.13 Orthogonality.

7.14 Expansion of a Vector Plane Wave.

PROBLEMS.

CHAPTER VIII: RADIATION.

THE INHOMOGENEOUS SOLAR WAVE EQUATION.

8.1 Kirchhoff Method of Integration.

8.2 Retarded Potentials.

8.3 Retarded Hertz Vector.

A MULTIPOLE EXPANSION.

8.4 Definition of the Moments.

8.5 Electric Dipole.

8.6 Magnetic Dipole.

RADIATION THEORY OF LINEAR ANTENNA SYSTEMS.

8.7 Radiation Field of a Single Linear Oscillator.

8.8 Radiation Due to Traveling Waves.

8.9 Suppression of Alternate Phases.

8.10 Directional Arrays.

8.11 Exact Calculation of the Field of a Linear Oscillator.

8.12 Radiation Resistance by the E.M.F. Method.

THE KIRCHHOFF-HUYGENS PRINCIPLE.

8.13 Scalar Wave Functions.

8.14 Direct Integration of the Field Equations.

8.15 Discontinuous Surface Distributions.

FOUR-DIMENSIONAL FORMULATION OF THE RADIATION PROBLEM.

8.16 Integration of the Wave Equation.

8.17 Field of a Moving Point Charge.

PROBLEMS.

CHAPTER IX: BOUNDARY-VALUE PROBLEMS.

GENERAL THEOREMS.

9.1 Boundary Conditions.

9.2 Uniqueness of Solution.

9.3 Electrodynamic Similitude.

REFLECTION AND REFRACTION AT A PLANE SURFACE.

9.4 Snell's Laws.

9.5 Fresnel's Equations.

9.6 Dielectric Media.

9.7 Total Reflection.

9.8 Refraction in a Conducting Medium.

9.9 Reflection at a Conducting Surface.

PLANE SHEETS.

9.10 Reflection and Transmission Coefficients.

9.11 Application to Dielectric Media.

9.12 Ahsorbing Layers.

SURFACE WAVES.

9.13 Complex Angles of Incidence

9.14 Skin Effect.

PROPAGATION ALONG A CIRCULAR CYLINDER.

9 15 Natural Modes.

9 16 Conductor Ernbeded in a Dielectric.

9 17 Further Discussion of the Principal Wave.

9 18 Waves in Hollow Pipes.

COAXIA LINES.

9.19 Propagation Constant.

9.20 Infinite Conductivity.

9.21 Finite Conductivity.

OSCILLATIONS OF A SPHERE.

9.22 Natural Modes.

9.23 Oscillations of a Conducting Sphere.

9.24 Oscillations in a Spherical Cavity.

DIFFRACTION OF A PLANE WAVE BY A SPHERE.

9.25 Expansion of the Diffracted Field.

9.26 Total Radiation.

9.27 Limiting Cases.

EFFECT OF THE EARTH ON THE PROPAGATION OF RADIO WAVES.

9.28 Sommerfeld Solution.

9.29 Weyl Solution.

9.30 van der Pol Solution.

9.31 Approximation of the Integrals.

PROBLEMS.

APPENDIX I.

A. NUMERICAL VALUES OF FUNDAMENTAL CONSTANTS.

B. DIMENSIONS OF ELECTROMAGNETIC QUANTITIES.

C. CONVERSION TABLES.

APPENDIX II.

FORMULAS FROM VECTOR ANALYSIS.

APPENDIX III.

CONDUCTIVITY OF VARIOUS MATERIALS.

SPECIFIC INDUCTIVE CAPACITY OF DIELECTRICS.

APPENDIX IV.

ASSOCIATED LEGENDRE FUNCTIONS.

Index.

商品描述(中文翻譯)

**描述**
這本書是電磁學的經典之作。最初於1941年出版,自那以後便被許多代學生、教師和研究人員使用。由於它是經典的電磁學,每一章至今仍然被引用。

這本經典重印版包含了1941年首次出版的完整原版。此外,還有兩篇新序,由保羅·E·格雷博士(前麻省理工學院校長及斯特拉頓博士的同事)和唐納德·G·達德利博士(IEEE出版社E/M波系列的編輯)撰寫,闡述了這本書對電磁學領域的貢獻的重要性。

**目錄**
前言
**第一章:場方程。**
麥克斯韋方程。
1.1 場向量。
1.2 電荷與電流。
1.3 場向量的散度。
1.4 場方程的積分形式。
物質的宏觀性質。
1.5 感應容量 c 和 p
1.6 電磁極化。
1.7 導電介質。
單位與維度。
1.8 M.K.S. 或 Giorgi 系統。
電磁勢。
1.9 向量和標量勢。
1.10 導電介質。
1.11 赫茲向量或極化勢。
1.12 複數場向量和勢。

邊界條件。
1.13 場向量的間斷。

坐標系統。
1.14 單位向量和倒數向量。
1.15 微分算子。
1.16 正交系統。
1.17 一般正交坐標中的場方程。
1.18 一些基本系統的性質。
場傳感器。
1.19 正交變換及其不變量。
1.20 張量分析的要素。
1.21 場方程的時空對稱性。
1.22 洛倫茲變換。
1.23 場向量在運動系統中的變換。
**第二章:應力與能量。**
彈性介質中的應力與應變。
2.1 彈性應力張量。
2.2 應變分析。
2.3 彈性能量與應力與應變的關係。
電磁力對電荷和電流的作用。
2.4 向量 E 和 B 的定義。
2.5 自由空間中的電磁應力張量。
2.6 電磁動量。
2.7 靜電能量作為電荷密度的函數。
2.8 靜電能量作為場強度的函數。
2.9 向量場的定理。
2.10 在靜電場中介電體的能量。
2.11 托恩森定理。
2.12 恩肖定理。
2.13 無電荷導體的能量定理。
靜磁能量。
2.14 靜止電流的磁能。
2.15 磁能作為場強度的函數。
2.16 鐵磁材料。
2.17 磁體在靜磁場中的能量。
2.18 永磁體的位能。
能量流。
2.19 波因廷定理。
2.20 複數波因廷向量。
靜電場中介電體的力。
2.21 流體中的體力。
2.22 固體中的體力。
2.23 應力張量。
2.24 不連續面。
2.25 靜電壓縮。
2.26 浸入流體中的物體所受的力。
靜磁場中的力。
2.27 非鐵磁材料。
2.28 鐵磁材料。
電磁場中的力。
2.29 浸入流體中的物體所受的力。
**第三章:靜電場。**
3.1 場和勢的方程。
3.2 邊界條件。
從電荷分佈計算場。
3.3 格林定理。
3.4 泊松方程的積分。
3.5 在無窮遠處的行為。
3.6 庫倫場。
3.7 積分的收斂性。
在球面調和函數中的勢展開。
3.8 電荷的軸向分佈。
3.9 偶極子。
3.10 軸向多極子。
3.11 任意電荷分佈。
3.12 多極子的通用理論。
介電極化。
3.13 向量 P 和 IT 的解釋。
3.14 電荷和偶極矩的體積分佈。
3.15 單層電荷分佈。
3.16 雙層分佈。
3.17 格林定理的解釋。
3.18 影像。
邊界值問題。
3.19 靜電問題的公式化。
3.20 解的唯一性。
3.21 拉普拉斯方程的解。
球體問題。
3.22 在點電荷場中的導體球。
3.23 在點電荷場中的介電球。
3.24 在平行場中的球體。
3.25 在導體橢圓體上的自由電荷。
3.26 在平行場中的導體橢圓體。
3.27 在平行場中的介電橢圓體。
3.28 E 和 D 的腔體定義。
3.29 施加在橢圓體上的扭矩。
**第四章:靜磁場。**
靜磁場的一般性質。
4.1 場方程和向量勢。
4.2 標量勢。
4.3 泊松分析。
計算電流分佈的場。
4.4 比奧-薩伐爾定律。
4.5 向量勢的展開。
4.6 磁偶極子。
4.7 磁殼。
關於單位和維度的插曲。
4.8 基本系統。
4.9 磁物質的庫倫定律。
磁極化。
4.10 等效電流分佈。
4.11 磁化棒和球的場。

向量 A 和 B 的不連續性。
4.12 電流的表面分佈。
4.13 磁矩的表面分佈。
方程的積分。
4.14 格林定理的向量類比。
4.15 對向量勢的應用。
邊界值問題。
4.16 靜磁問題的公式化。
4.17 解的唯一性。
橢圓體問題。
4.18 均勻磁化橢圓體的場。
4.19 磁橢圓體在平行場中的場。
平行場中的圓柱。
4.20 場的計算。
4.21 施加在圓柱上的力。
問題。
**第五章:無界各向同性介質中的平面波。**
平面波的傳播。
5.1 一維場的方程。
5.2 隨時間和諧的平面波。
5.3 隨空間和諧的平面波。