Applied Mixed Models in Medicine, 2/e
暫譯: 醫學中的應用混合模型,第2版
Helen Brown, Robin Prescott
- 出版商: Wiley
- 出版日期: 2006-06-01
- 售價: $1,750
- 貴賓價: 9.8 折 $1,715
- 語言: 英文
- 頁數: 478
- 裝訂: Hardcover
- ISBN: 0470023562
- ISBN-13: 9780470023563
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$520$442 -
$550$468 -
$520$343 -
$520$406 -
$450$351 -
$580$493 -
$690$545 -
$580$522 -
$720$612 -
$650$553 -
$580$383 -
$620$490 -
$780$616 -
$690$621 -
$520$442 -
$680$537 -
$490$323 -
$560$476 -
$420$357 -
$499$424 -
$490$382 -
$450$351 -
$580$383 -
$560$476 -
$590$460
相關主題
商品描述
Description
Since the publication of the first edition the topic of mixed modelling has seen many developments, particularly regarding software and applications. There are now many more software options for applying mixed model methodology, and SAS has been updated to include powerful new techniques. Applications of mixed models have increased, notably in the areas of health research and epidemiology.
This new edition presents:
- Presents an overview of the theory of mixed models applied to problems in medical research
- Fully updated to include up-to-date references and developments.
Computer examples updated to the latest edition of SAS, and now includes more discussion of other software options- Includes many more examples using real data, including examples from health research and epidemiology
- Includes a new section on missing data, and a serious update of the material on repeated measures
- Supported by a Website featuring computer code, data sets, and further material
Table of Contents
Preface to Second Edition.
Mixed Model Notations.
1 Introduction.
1.1 The Use of Mixed Models.
1.2 Introductory Example.
1.3 A Multi-Centre Hypertension Trial.
1.4 Repeated Measures Data.
1.5 More aboutMixed Models.
1.6 Some Useful Definitions.
2 NormalMixed Models.
2.1 Model Definition.
2.2 Model Fitting Methods.
2.3 The Bayesian Approach.
2.4 Practical Application and Interpretation.
2.5 Example.
3 Generalised Linear MixedModels.
3.1 Generalised Linear Models.
3.2 Generalised Linear Mixed Models.
3.3 Practical Application and Interpretation.
3.4 Example.
4 Mixed Models for Categorical Data.
4.1 Ordinal Logistic Regression (Fixed Effects Model).
4.2 Mixed Ordinal Logistic Regression.
4.3 Mixed Models for Unordered Categorical Data.
4.4 Practical Application and Interpretation.
4.5 Example.
5 Multi-Centre Trials and Meta-Analyses.
5.1 Introduction to Multi-Centre Trials.
5.2 The Implications of using Different Analysis Models.
5.3 Example: A Multi-Centre Trial.
5.4 Practical Application and Interpretation.
5.5 Sample Size Estimation.
5.6 Meta-Analysis.
5.7 Example: Meta-analysis.
6 RepeatedMeasures Data.
6.1 Introduction.
6.2 Covariance Pattern Models.
6.3 Example: Covariance Pattern Models for Normal Data.
6.4 Example: Covariance Pattern Models for Count Data.
6.5 Random Coefficients Models.
6.6 Examples of Random Coefficients Models.
6.7 Sample Size Estimation.
7 Cross-Over Trials.
7.1 Introduction.
7.2 Advantages of Mixed Models in Cross-Over Trials.
7.3 The AB/BA Cross-Over Trial.
7.4 Higher Order Complete Block Designs.
7.5 Incomplete Block Designs.
7.6 Optimal Designs.
7.7 Covariance Pattern Models.
7.8 Analysis of Binary Data.
7.9 Analysis of Categorical Data.
7.10 Use of Results from Random Effects Models in Trial Design.
7.11 General Points.
8 Other Applications of MixedModels.
8.1 Trials with Repeated Measurements within Visits.
8.2 Multi-Centre Trials with Repeated Measurements.
8.3 Multi-Centre Cross-Over Trials.
8.4 Hierarchical Multi-Centre Trials and Meta-Analysis.
8.5 Matched Case–Control Studies.
8.6 Different Variances for Treatment Groups in a Simple Between-Patient Trial.
8.7 Estimating Variance Components in an Animal Physiology Trial.
8.8 Inter- and Intra-Observer Variation in Foetal Scan Measurements.
8.9 Components of Variation and Mean Estimates in a Cardiology Experiment.
8.10 Cluster Sample Surveys.
8.11 Small AreaMortality Estimates.
8.12 Estimating Surgeon Performance.
8.13 Event History Analysis.
8.14 A Laboratory Study Using aWithin-Subject 4 × 4 Factorial Design.
8.15 Bioequivalence Studies with Replicate Cross-Over Designs.
8.16 Cluster Randomised Trials.
9 Software for Fitting MixedModels.
9.1 Packages for Fitting Mixed Models.
9.2 Basic use of PROC MIXED.
9.3 Using SAS to Fit Mixed Models to Non-Normal Data.
Glossary.
References.
Index.
商品描述(中文翻譯)
**描述**
自第一版出版以來,混合模型的主題經歷了許多發展,特別是在軟體和應用方面。現在有更多的軟體選擇可以應用混合模型方法論,並且 SAS 已更新以包含強大的新技術。混合模型的應用增加,特別是在健康研究和流行病學領域。
本新版本提供:
- 概述應用於醫學研究問題的混合模型理論
- 完全更新以包含最新的參考資料和發展。計算機範例已更新至最新版本的 SAS,並且現在包含更多其他軟體選項的討論
- 包含更多使用真實數據的範例,包括來自健康研究和流行病學的範例
- 包含有關缺失數據的新章節,以及對重複測量材料的重大更新
- 支援一個網站,提供計算機代碼、數據集和其他材料
**目錄**
**第二版前言**
**混合模型符號**
**1 引言**
1.1 混合模型的使用
1.2 介紹性範例
1.3 一項多中心高血壓試驗
1.4 重複測量數據
1.5 更多關於混合模型的資訊
1.6 一些有用的定義
**2 正態混合模型**
2.1 模型定義
2.2 模型擬合方法
2.3 貝葉斯方法
2.4 實際應用與解釋
2.5 範例
**3 廣義線性混合模型**
3.1 廣義線性模型
3.2 廣義線性混合模型
3.3 實際應用與解釋
3.4 範例
**4 類別數據的混合模型**
4.1 有序邏輯回歸(固定效應模型)
4.2 混合有序邏輯回歸
4.3 無序類別數據的混合模型
4.4 實際應用與解釋
4.5 範例
**5 多中心試驗與元分析**
5.1 多中心試驗介紹
5.2 使用不同分析模型的影響
5.3 範例:一項多中心試驗
5.4 實際應用與解釋
5.5 樣本大小估計
5.6 元分析
5.7 範例:元分析
**6 重複測量數據**
6.1 介紹
6.2 協方差模式模型
6.3 範例:正態數據的協方差模式模型
6.4 範例:計數數據的協方差模式模型
6.5 隨機係數模型
6.6 隨機係數模型的範例
6.7 樣本大小估計
**7 交叉試驗**
7.1 介紹
7.2 混合模型在交叉試驗中的優勢
7.3 AB/BA 交叉試驗
7.4 高階完全區塊設計
7.5 不完全區塊設計
7.6 最佳設計
7.7 協方差模式模型
7.8 二元數據分析
7.9 類別數據分析
7.10 在試驗設計中使用隨機效應模型的結果
7.11 一般要點
**8 混合模型的其他應用**
8.1 訪問內的重複測量試驗
8.2 具有重複測量的多中心試驗
8.3 多中心交叉試驗
8.4 階層多中心試驗與元分析
8.5 匹配病例對照研究
8.6 簡單的患者間試驗中治療組的不同變異
8.7 在動物生理學試驗中估計變異成分
8.8 胎兒掃描測量中的觀察者間和觀察者內變異
8.9 心臟病實驗中的變異成分和均值估計
8.10 群集抽樣調查
8.11 小區域死亡率估計
8.12 估計外科醫生的表現
8.13 事件歷史分析
8.14 使用受試者內 4 × 4 因子設計的實驗室研究
8.15 具有重複交叉設計的生物等效性研究
8.16 群集隨機試驗
**9 擬合混合模型的軟體**
9.1 擬合混合模型的套件
9.2 PROC MIXED 的基本使用
9.3 使用 SAS 擬合非正態數據的混合模型
**術語表**
**參考文獻**
**索引**