A Probabilistic Theory of Pattern Recognition
暫譯: 模式識別的機率理論
Luc Devroye, Laszlo Györfi, Gabor Lugosi
- 出版商: Springer
- 出版日期: 1996-04-04
- 售價: $5,710
- 貴賓價: 9.5 折 $5,425
- 語言: 英文
- 頁數: 638
- 裝訂: Hardcover
- ISBN: 0387946187
- ISBN-13: 9780387946184
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$4,930High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices (Hardcover)
-
$520$416 -
$750$638 -
$620$484 -
$720$612 -
$760$600 -
$880$748 -
$590$460 -
$650$553 -
$680$537 -
$650$553 -
$650$553 -
$520$406 -
$690$545 -
$780$616 -
$650$553 -
$320$250 -
$580$493 -
$299$254 -
$1,560$1,326 -
$550$468 -
$290$226 -
$299$254 -
$420$357 -
$780$616
相關主題
商品描述
Description
self-contained and coherent account of probabilistic techniques, covering: distance measures, kernel rules, nearest neighbour rules, Vapnik-Chervonenkis theory, parametric classification, and feature extraction. Each chapter concludes with problems and exercises to further the readers understanding. Both research workers and graduate students will benefit from this wide-ranging and up-to-date account of a fast- moving field.
Table of contents
Preface* Introduction* The Bayes Error* Inequalities and alternate distance measures* Linear discrimination* Nearest neighbor rules* Consistency* Slow rates of convergence Error estimation* The regular histogram rule* Kernel rules Consistency of the k-nearest neighbor rule* Vapnik-Chervonenkis theory* Combinatorial aspects of Vapnik-Chervonenkis theory* Lower bounds for empirical classifier selection* The maximum likelihood principle* Parametric classification* Generalized linear discrimination* Complexity regularization* Condensed and edited nearest neighbor rules* Tree classifiers* Data-dependent partitioning* Splitting the data* The resubstitution estimate* Deleted estimates of the error probability* Automatic kernel rules* Automatic nearest neighbor rules* Hypercubes and discrete spaces* Epsilon entropy and totally bounded sets* Uniform laws of large numbers* Neural networks* Other error estimates* Feature extraction* Appendix* Notation* References* Index
商品描述(中文翻譯)
**描述**
本書提供了一個自成體系且連貫的機率技術介紹,涵蓋了:距離度量、核規則、最近鄰規則、Vapnik-Chervonenkis 理論、參數分類和特徵提取。每一章結尾都有問題和練習,以增進讀者的理解。無論是研究人員還是研究生,都能從這個涵蓋廣泛且與時俱進的快速發展領域中受益。
**目錄**
- 前言
- * 介紹
- * 貝葉斯誤差
- * 不等式與替代距離度量
- * 線性判別
- * 最近鄰規則
- * 一致性
- * 收斂速度緩慢的誤差估計
- * 正規直方圖規則
- * 核規則 k-最近鄰規則的一致性
- * Vapnik-Chervonenkis 理論
- * Vapnik-Chervonenkis 理論的組合方面
- * 實證分類器選擇的下界
- * 最大似然原則
- * 參數分類
- * 廣義線性判別
- * 複雜度正則化
- * 縮減和編輯的最近鄰規則
- * 樹分類器
- * 數據依賴的劃分
- * 數據分割
- * 重新替代估計
- * 刪除的誤差概率估計
- * 自動核規則
- * 自動最近鄰規則
- * 超立方體和離散空間
- * ε 熵和完全有界集
- * 大數法則的均勻性
- * 神經網絡
- * 其他誤差估計
- * 特徵提取
- * 附錄
- * 符號
- * 參考文獻
- * 索引