Clinical Trial Data Analysis Using R and SAS (Paperback)
暫譯: 使用 R 和 SAS 進行臨床試驗數據分析 (平裝本)

Chen, Ding-Geng (Din), Peace, Karl E., Zhang, Pinggao

買這商品的人也買了...

相關主題

商品描述

Review of the First Edition

 

 

"The goal of this book, as stated by the authors, is to fill the knowledge gap that exists between developed statistical methods and the applications of these methods. Overall, this book achieves the goal successfully and does a nice job. I would highly recommend it ...The example-based approach is easy to follow and makes the book a very helpful desktop reference for many biostatistics methods."--Journal of Statistical Software

 

 

 

 

 

 

 

 

 

Clinical Trial Data Analysis Using R and SAS, Second Edition provides a thorough presentation of biostatistical analyses of clinical trial data with step-by-step implementations using R and SAS. The book's practical, detailed approach draws on the authors' 30 years' experience in biostatistical research and clinical development. The authors develop step-by-step analysis code using appropriate R packages and functions and SAS PROCS, which enables readers to gain an understanding of the analysis methods and R and SAS implementation so that they can use these two popular software packages to analyze their own clinical trial data.

 

 

 

 

 

 

 

 

 

What's New in the Second Edition

 

 

 

 

  • Adds SAS programs along with the R programs for clinical trial data analysis.
  • Updates all the statistical analysis with updated R packages.
  • Includes correlated data analysis with multivariate analysis of variance.
  • Applies R and SAS to clinical trial data from hypertension, duodenal ulcer, beta blockers, familial andenomatous polyposis, and breast cancer trials.
  • Covers the biostatistical aspects of various clinical trials, including treatment comparisons, time-to-event endpoints, longitudinal clinical trials, and bioequivalence trials.

 

 

商品描述(中文翻譯)

第一版回顧

 

 

「本書的目標,如作者所述,是填補已開發統計方法與這些方法應用之間的知識空白。總體而言,本書成功達成了這一目標,表現相當出色。我會強烈推薦這本書……基於範例的方法易於理解,使本書成為許多生物統計方法的非常有用的桌面參考。」--統計軟體期刊

 

 

 

 

 

 

 

 

 

使用 R 和 SAS 進行臨床試驗數據分析,第二版 提供了對臨床試驗數據的生物統計分析的全面介紹,並使用 R 和 SAS 進行逐步實作。本書的實用且詳細的方法基於作者在生物統計研究和臨床開發方面的 30 年經驗。作者使用適當的 R 套件和函數以及 SAS PROCS 開發逐步分析代碼,使讀者能夠理解分析方法及 R 和 SAS 的實作,從而能夠使用這兩個流行的軟體包來分析自己的臨床試驗數據。

 

 

 

 

 

 

 

 

 

第二版的新內容

 

 

 

 


  • 新增 SAS 程式,與臨床試驗數據分析的 R 程式一起提供。

  • 更新所有統計分析,使用更新的 R 套件。

  • 包含相關數據分析及多變量變異數分析。

  • 將 R 和 SAS 應用於高血壓、十二指腸潰瘍、β 受體阻滯劑、家族性腺瘤性息肉病和乳腺癌試驗的臨床試驗數據。

  • 涵蓋各種臨床試驗的生物統計方面,包括治療比較、事件發生時間終點、縱向臨床試驗和生物等效性試驗。

 

 

作者簡介

Ding-Geng (Din) Chen, Ph.D., is a professor at the University of Rochester Medical Center. Dr. Chen has vast experience in

 

 

biostatistical research and clinical trial development and methodology. He has authored or co-authored more than 100 journal

 

 

 

 

publications on biostatistical methodologies and applications. He is also the co-author (with Dr. Peace) of Clinical Trial Methodology

 

 

 

 

and Clinical Trial Data Analysis Using R and a co-editor (with Drs. Sun and Peace) of Interval-Censored Time-to-Event Data: Methods

 

 

 

 

and Applications. He is a member of the American Statistical Association, chair for the STAT section of the American Public Health

 

 

 

 

Association, an associate editor of the Journal of Statistical Computation and Simulation, and an editorial board member of several

 

 

 

 

other journals.

 

 

 

 

 

 

 

 

 

Karl E. Peace, Ph.D., is the Georgia Cancer Coalition Distinguished Cancer Scholar, senior research scientist, and professor of

 

 

 

 

biostatistics in the Jiann-Ping Hsu College of Public Health at Georgia Southern University. He is also an adjunct professor of

 

 

 

 

biostatistics at the VCU School of Medicine. Dr. Peace is a reviewer or editor of several journals, the founding editor of the Journal of

 

 

 

 

Biopharmaceutical Statistics, and a fellow of the American Statistical Association. He has authored or co-authored over 150 articles

 

 

 

 

and 10 books. He has received numerous awards, including the University System of Georgia Board of Regents' Alumni Hall of Fame

 

 

 

 

Award, the First President's Medal for outstanding contributions to Georgia Southern University, and distinguished meritorious service

 

 

 

 

awards from the American Public Health Association and other organizations. In 2012, the American Statistical Association created the

 

 

 

 

Karl E. Peace Award for Outstanding Statistical Contributions for the Betterment of Society.

 

 

作者簡介(中文翻譯)

丁耕(Din)陳博士是羅徹斯特大學醫學中心的教授。陳博士在生物統計研究和臨床試驗開發及方法論方面擁有豐富的經驗。他已發表或共同發表超過100篇有關生物統計方法論和應用的期刊文章。他還是《臨床試驗方法論》(與和平博士共同著作)和《使用R的臨床試驗數據分析》的共同作者,以及《區間截斷的事件時間數據:方法與應用》(與孫博士及和平博士共同編輯)的共同編輯。他是美國統計協會的成員,美國公共衛生協會STAT部分的主席,《統計計算與模擬期刊》的副編輯,以及幾本其他期刊的編輯委員會成員。

卡爾·E·和平博士是喬治亞癌症聯盟傑出癌症學者、高級研究科學家,以及喬治亞南方大學簡平徐公共衛生學院的生物統計學教授。他同時也是VCU醫學院的生物統計學兼任教授。和平博士是多本期刊的審稿人或編輯,《生物製藥統計期刊》的創始編輯,以及美國統計協會的會士。他已發表或共同發表超過150篇文章和10本書籍。他獲得了多項獎項,包括喬治亞大學系統董事會的校友名人堂獎、喬治亞南方大學傑出貢獻的第一屆校長獎,以及來自美國公共衛生協會和其他組織的傑出服務獎。2012年,美國統計協會創立了卡爾·E·和平獎,以表彰對社會改善的傑出統計貢獻。