A Practical Guide to Age-Period-Cohort Analysis: The Identification Problem and Beyond
暫譯: 實用的年齡-時期-世代分析指南:識別問題及其後續探討
Fu, Wenjiang
- 出版商: CRC
- 出版日期: 2020-12-18
- 售價: $2,510
- 貴賓價: 9.5 折 $2,385
- 語言: 英文
- 頁數: 250
- 裝訂: Quality Paper - also called trade paper
- ISBN: 036773480X
- ISBN-13: 9780367734800
海外代購書籍(需單獨結帳)
相關主題
商品描述
Age-Period-Cohort analysis has a wide range of applications, from chronic disease incidence and mortality data in public health and epidemiology, to many social events (birth, death, marriage, etc) in social sciences and demography, and most recently investment, healthcare and pension contribution in economics and finance. Although APC analysis has been studied for the past 40 years and a lot of methods have been developed, the identification problem has been a major hurdle in analyzing APC data, where the regression model has multiple estimators, leading to indetermination of parameters and temporal trends. A Practical Guide to Age-Period Cohort Analysis: The Identification Problem and Beyond provides practitioners a guide to using APC models as well as offers graduate students and researchers an overview of the current methods for APC analysis while clarifying the confusion of the identification problem by explaining why some methods address the problem well while others do not.
Features
- Gives a comprehensive and in-depth review of models and methods in APC analysis.
- Provides an in-depth explanation of the identification problem and statistical approaches to addressing the problem and clarifying the confusion.
- Utilizes real data sets to illustrate different data issues that have not been addressed in the literature, including unequal intervals in age and period groups, etc.
Wenjiang Fu is a professor of statistics at the University of Houston. Professor Fu's research interests include modeling big data, applied statistics research in health and human genome studies, and analysis of complex economic and social science data.
商品描述(中文翻譯)
年齡-時期-世代(Age-Period-Cohort,簡稱APC)分析具有廣泛的應用範圍,從公共衛生和流行病學中的慢性疾病發生率和死亡率數據,到社會科學和人口統計學中的許多社會事件(出生、死亡、婚姻等),以及最近在經濟學和金融中的投資、醫療保健和退休金貢獻。儘管APC分析已研究了40年,並且開發了許多方法,但識別問題一直是分析APC數據的一個主要障礙,因為回歸模型有多個估計量,導致參數和時間趨勢的不確定性。《年齡-時期-世代分析實用指南:識別問題及其後續》為實務工作者提供了使用APC模型的指導,並為研究生和研究人員提供了當前APC分析方法的概述,同時通過解釋為什麼某些方法能夠很好地解決問題而其他方法則無法,來澄清識別問題的困惑。
特點
- 提供APC分析中模型和方法的全面深入回顧。
- 對識別問題及其統計方法進行深入解釋,並澄清相關的困惑。
- 利用真實數據集來說明文獻中未解決的不同數據問題,包括年齡和時期組別的不等間隔等。
- 包含逐步建模指導和R程式碼,演示如何進行APC分析以及如何進行未來預測。
- 反映APC建模和分析的最新發展,包括內在估計量。
Wenjiang Fu是休斯頓大學的統計學教授。Fu教授的研究興趣包括大數據建模、健康和人類基因組研究中的應用統計研究,以及複雜經濟和社會科學數據的分析。