Introduction to High-Dimensional Statistics
暫譯: 高維統計學導論

Giraud, Christophe

  • 出版商: CRC
  • 出版日期: 2021-08-31
  • 售價: $3,350
  • 貴賓價: 9.5$3,183
  • 語言: 英文
  • 頁數: 368
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 0367716224
  • ISBN-13: 9780367716226
  • 相關分類: 機率統計學 Probability-and-statistics
  • 立即出貨 (庫存=1)

相關主題

商品描述

Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition features:

 

  • Revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low rank and row sparse linear regression, or aggregation of a continuous set of estimators.

 

 

 

 

 

 

 

 

 

 

 

  • Three new chapters on iterative algorithms, clustering and minimax lower bounds.
  • Enhanced appendices, minimax lower-bounds mainly with the addition of Davis-Kahan perturbation bound and of two simple versions of Hanson-Wright concentration inequality.
  • Covers cutting-edge statistical methods including model selection, sparsity and the lasso, iterative hard thresholding, aggregation, support vector machines and learning theory
  • Provides detailed exercises at the end of every chapter with collaborative solutions on a wikisite.
  • Illustrates concepts with simple but clear practical examples.

 

商品描述(中文翻譯)

《高維統計學導論(第二版)》保留了第一版的理念:作為學生和研究人員探索該領域及其相關數學的簡明指南。主要概念和思想以簡單的情境呈現,從而避免不必要的技術細節。高維統計學是一個快速發展的領域,已在多個主題上取得了重大進展,提供了新的見解和方法。這一新版提供了高維統計學數學基礎的簡潔介紹,具體特點包括:

- 修訂了前一版的章節,並新增了許多關於一些重要主題的材料,包括壓縮感知、帶有凸約束的估計、斜率估計量、同時低秩和行稀疏的線性回歸,或連續估計量集合的聚合。

- 三個新章節,涵蓋迭代算法、聚類和最小最大下界。

- 增強的附錄,主要是最小最大下界,新增了Davis-Kahan擾動界和Hanson-Wright濃度不等式的兩個簡單版本。

- 涵蓋前沿的統計方法,包括模型選擇、稀疏性和套索、迭代硬閾值、聚合、支持向量機和學習理論。

- 每章末提供詳細的練習題,並在維基網站上提供協作解答。

- 以簡單但清晰的實際例子說明概念。

作者簡介

Christophe Giraud was a student of the École Normale Supérieure de Paris, and he received a Ph.D in probability theory from the University Paris 6. He was assistant professor at the University of Nice from 2002 to 2008. He has been associate professor at the École Polytechnique since 2008 and professor at Paris Sud University (Orsay) since 2012. His current research focuses mainly on the statistical theory of high-dimensional data analysis and its applications to life sciences.

作者簡介(中文翻譯)

Christophe Giraud 是巴黎高等師範學院(École Normale Supérieure de Paris)的學生,並於巴黎第六大學(University Paris 6)獲得概率論的博士學位。他於2002年至2008年間擔任尼斯大學(University of Nice)的助理教授。自2008年以來,他一直是法國巴黎綜合理工學院(École Polytechnique)的副教授,並自2012年起擔任巴黎南大學(Paris Sud University,Orsay)的教授。他目前的研究主要集中在高維數據分析的統計理論及其在生命科學中的應用。