Introduction to High-Dimensional Statistics
暫譯: 高維統計學導論

Christophe Giraud

買這商品的人也買了...

商品描述

Ever-greater computing technologies have given rise to an exponentially growing volume of data. Today massive data sets (with potentially thousands of variables) play an important role in almost every branch of modern human activity, including networks, finance, and genetics. However, analyzing such data has presented a challenge for statisticians and data analysts and has required the development of new statistical methods capable of separating the signal from the noise.

Introduction to High-Dimensional Statistics is a concise guide to state-of-the-art models, techniques, and approaches for handling high-dimensional data. The book is intended to expose the reader to the key concepts and ideas in the most simple settings possible while avoiding unnecessary technicalities.

Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this highly accessible text:

  • Describes the challenges related to the analysis of high-dimensional data
  • Covers cutting-edge statistical methods including model selection, sparsity and the lasso, aggregation, and learning theory
  • Provides detailed exercises at the end of every chapter with collaborative solutions on a wikisite
  • Illustrates concepts with simple but clear practical examples

Introduction to High-Dimensional Statistics is suitable for graduate students and researchers interested in discovering modern statistics for massive data. It can be used as a graduate text or for self-study.

商品描述(中文翻譯)

隨著計算技術的日益進步,數據量以指數級增長。如今,龐大的數據集(可能包含數千個變數)在幾乎每一個現代人類活動領域中都扮演著重要角色,包括網絡、金融和遺傳學。然而,分析這些數據對統計學家和數據分析師來說是一項挑戰,並且需要開發新的統計方法來區分信號噪音

高維統計學導論是一本簡明的指南,介紹了處理高維數據的最先進模型、技術和方法。本書旨在以最簡單的方式向讀者介紹關鍵概念和思想,同時避免不必要的技術細節。

本書提供了高維統計學數學基礎的簡潔介紹,這本極具可讀性的文本:


  • 描述了與高維數據分析相關的挑戰

  • 涵蓋了前沿的統計方法,包括模型選擇、稀疏性與套索、聚合和學習理論

  • 在每章結尾提供詳細的練習題,並在維基網站上提供協作解答

  • 用簡單但清晰的實際例子來說明概念

高維統計學導論適合對現代統計學感興趣的研究生和研究人員,特別是那些希望探索龐大數據的讀者。它可以用作研究生教材或自學資料。

最後瀏覽商品 (20)