Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data
Karpatne, Anuj, Kannan, Ramakrishnan, Kumar, Vipin
- 出版商: CRC
- 出版日期: 2024-08-26
- 售價: $2,310
- 貴賓價: 9.5 折 $2,195
- 語言: 英文
- 頁數: 430
- 裝訂: Quality Paper - also called trade paper
- ISBN: 036769820X
- ISBN-13: 9780367698201
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Knowledge Guided Machine Learning provides an introduction to this rapidly growing field by discussing some of the common themes of research in SGML, using illustrative examples and case studies from diverse application domains and research communities as contributed book chapters.
商品描述(中文翻譯)
《知識引導的機器學習》提供了對這一快速發展領域的介紹,通過討論SGML研究中的一些共同主題,並使用來自不同應用領域和研究社群的插圖示例和案例研究作為貢獻的書章。
作者簡介
Anuj Karpatne is an Assistant Professor in the Department of Computer Science at Virginia Tech. His research focuses on pushing on the frontiers of knowledge-guided machine learning by combining scientific knowledge and data in the design and learning of machine learning methods to solve scientific and societally relevant problems.
Ramakrishnan Kannan is the group leader for Discrete Algorithms at Oak Ridge National Laboratory. His research expertise is in distributed machine learning and graph algorithms on HPC platforms and their application to scientific data with a specific interest for accelerating scientific discovery.
Vipin Kumar is a Regents Professor at the University of Minnesota's Computer Science and Engineering Department. His current major research focus is on knowledge-guided machine learning and its applications to understanding the impact of human induced changes on the Earth and its environment.
作者簡介(中文翻譯)
Anuj Karpatne 是維吉尼亞理工大學計算機科學系的助理教授。他的研究專注於推進知識引導的機器學習的前沿,通過結合科學知識和數據來設計和學習機器學習方法,以解決科學和社會相關的問題。
Ramakrishnan Kannan 是橡樹嶺國家實驗室離散算法小組的組長。他的研究專長在於分散式機器學習和高效能計算平台上的圖算法,以及它們在科學數據中的應用,特別關注加速科學發現。
Vipin Kumar 是明尼蘇達大學計算機科學與工程系的校監教授。他目前的主要研究重點是知識引導的機器學習及其在理解人類引起的變化對地球及其環境影響的應用。