Deep Learning for Remote Sensing Images with Open Source Software
暫譯: 使用開源軟體進行遙感影像的深度學習
Cresson, Rémi
- 出版商: CRC
- 出版日期: 2022-01-16
- 售價: $1,880
- 貴賓價: 9.5 折 $1,786
- 語言: 英文
- 頁數: 152
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0367518988
- ISBN-13: 9780367518981
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
商品描述
In today's world, deep learning source codes and a plethora of open access geospatial images are readily available and easily accessible. However, most people are missing the educational tools to make use of this resource. Deep Learning for Remote Sensing Images with Open Source Software is the first practical book to introduce deep learning techniques using free open source tools for processing real world remote sensing images. The approaches detailed in this book are generic and can be adapted to suit many different applications for remote sensing image processing, including landcover mapping, forestry, urban studies, disaster mapping, image restoration, etc. Written with practitioners and students in mind, this book helps link together the theory and practical use of existing tools and data to apply deep learning techniques on remote sensing images and data.
Specific Features of this Book:
- The first book that explains how to apply deep learning techniques to public, free available data (Spot-7 and Sentinel-2 images, OpenStreetMap vector data), using open source software (QGIS, Orfeo ToolBox, TensorFlow)
- Presents approaches suited for real world images and data targeting large scale processing and GIS applications
- Introduces state of the art deep learning architecture families that can be applied to remote sensing world, mainly for landcover mapping, but also for generic approaches (e.g. image restoration)
- Suited for deep learning beginners and readers with some GIS knowledge. No coding knowledge is required to learn practical skills.
- Includes deep learning techniques through many step by step remote sensing data processing exercises.
商品描述(中文翻譯)
在當今世界,深度學習的源代碼和大量開放存取的地理空間影像隨時可用且易於獲取。然而,大多數人缺乏利用這些資源的教育工具。使用開源軟體進行遙感影像的深度學習 是第一本實用的書籍,介紹了使用免費開源工具處理現實世界遙感影像的深度學習技術。本書中詳細介紹的方法是通用的,可以適應許多不同的遙感影像處理應用,包括土地覆蓋圖製作、林業、城市研究、災害映射、影像修復等。這本書是為實務工作者和學生而寫,幫助將現有工具和數據的理論與實際應用聯繫起來,以便在遙感影像和數據上應用深度學習技術。
本書的特點:
- 第一本解釋如何將深度學習技術應用於公共、免費可用數據(Spot-7 和 Sentinel-2 影像、OpenStreetMap 向量數據),使用開源軟體(QGIS、Orfeo ToolBox、TensorFlow)的書籍
- 提供適合現實世界影像和數據的處理方法,針對大規模處理和地理資訊系統(GIS)應用
- 介紹可應用於遙感領域的最先進深度學習架構系列,主要用於土地覆蓋圖製作,但也適用於一般方法(例如影像修復)
- 適合深度學習初學者和具備一定GIS知識的讀者。學習實用技能不需要編程知識
- 包含通過多個逐步的遙感數據處理練習來學習深度學習技術
作者簡介
Remi Cresson received the M. Sc. in electrical engineering from the Grenoble Institute of Technology, France, 2009. He is with the Land, Environment, Remote Sensing and Spatial Information Joint Research Unit (UMR TETIS), at the French Research Institute of Science and Technology for Environment and Agriculture (Irstea), Montpellier, France. His research and engineering interests include remote sensing image processing, High Performance Computing, and geospatial data inter-operability. He is member of the Orfeo ToolBox Project Steering Committee and charter member of the Open source geospatial foundation (OSGEO).
作者簡介(中文翻譯)
Remi Cresson於2009年獲得法國格勒諾布爾科技大學的電機工程碩士學位。他目前在法國環境與農業科學技術研究所(Irstea)位於蒙彼利埃的土地、環境、遙感與空間資訊聯合研究單位(UMR TETIS)工作。他的研究和工程興趣包括遙感影像處理、高效能計算以及地理空間數據的互操作性。他是Orfeo ToolBox專案指導委員會的成員,也是開放源碼地理空間基金會(OSGEO)的創始成員。