Explainable Machine Learning for Geospatial Data Analysis: A Data-Centric Approach (可解釋的機器學習於地理空間數據分析:以數據為中心的方法)
Kamusoko, Courage
- 出版商: CRC
- 出版日期: 2024-12-06
- 售價: $4,820
- 貴賓價: 9.5 折 $4,579
- 語言: 英文
- 頁數: 266
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1032503807
- ISBN-13: 9781032503806
-
相關分類:
Data Science、Machine Learning
尚未上市,無法訂購
相關主題
商品描述
Explainable machine learning (XML), a subfield of AI, is focused on making complex AI models understandable to humans. This book highlights and explains the details of machine learning models used in geospatial data analysis. It demonstrates the need for a data-centric, explainable machine learning approach to obtain new insights from geospatial data. It presents the opportunities, challenges, and gaps in the machine and deep learning approaches for geospatial data analysis and how they are applied to solve various environmental problems in land cover changes and in modeling forest canopy height and aboveground biomass density. The author also includes guidelines and code scripts (R, Python) valuable for practical readers.
Features
- Data-centric explainable machine learning (ML) approaches for geospatial data analysis.
- The foundations and approaches to explainable ML and deep learning.
- Several case studies from urban land cover and forestry where existing explainable machine learning methods are applied.
- Descriptions of the opportunities, challenges, and gaps in data-centric explainable ML approaches for geospatial data analysis.
- Scripts in R and python to perform geospatial data analysis, available upon request.
This book is an essential resource for graduate students, researchers, and academics working in and studying data science and machine learning, as well as geospatial data science professionals using GIS and remote sensing in environmental fields.
商品描述(中文翻譯)
可解釋的機器學習(Explainable Machine Learning, XML)是人工智慧的一個子領域,專注於使複雜的人工智慧模型對人類可理解。本書強調並解釋了用於地理空間數據分析的機器學習模型的細節。它展示了以數據為中心的可解釋機器學習方法的必要性,以從地理空間數據中獲得新的見解。書中介紹了機器學習和深度學習方法在地理空間數據分析中的機會、挑戰和不足之處,以及它們如何應用於解決土地覆蓋變化和建模森林冠層高度及地上生物量密度等各種環境問題。作者還提供了對實務讀者有價值的指導方針和代碼腳本(R、Python)。
特色
- 以數據為中心的可解釋機器學習(ML)方法,用於地理空間數據分析。
- 可解釋機器學習和深度學習的基礎和方法。
- 來自城市土地覆蓋和林業的幾個案例研究,展示現有的可解釋機器學習方法的應用。
- 描述以數據為中心的可解釋機器學習方法在地理空間數據分析中的機會、挑戰和不足之處。
- 提供R和Python的腳本以進行地理空間數據分析,需索取。
本書是研究生、研究人員和學術界在數據科學和機器學習領域工作和學習的必備資源,亦適合使用GIS和遙感技術的地理空間數據科學專業人士,特別是在環境領域。
作者簡介
Courage Kamusoko is an independent geospatial consultant based in Japan. His expertise includes land-use/cover change modeling and the design and implementation of geospatial database management systems. His primary research involves analyses of remotely sensed images, land-use/cover modeling, modeling aboveground biomass, machine learning, and deep learning. In addition to his focus on geospatial research and consultancy, he has dedicated time to teaching practical machine learning for geospatial data analysis and modeling.
作者簡介(中文翻譯)
Courage Kamusoko 是一位駐日的獨立地理空間顧問。他的專長包括土地使用/覆蓋變化建模以及地理空間數據庫管理系統的設計與實施。他的主要研究涉及遙感影像分析、土地使用/覆蓋建模、地上生物量建模、機器學習和深度學習。除了專注於地理空間研究和顧問工作外,他還投入時間教授地理空間數據分析和建模的實用機器學習課程。