Calculus : Early Transcendentals, 9/e (Metric Version)(Hardcover) (微積分:早期超越,9版(公制版)(精裝本))

James Stewart , Daniel K. Clegg , Saleem Watson , Lothar Redlin

買這商品的人也買了...

相關主題

商品描述

本書序言

●NEW EXPLANATIONS AND EXAMPLES: Careful refinements throughout provide even greater clarity on key concepts such as computing volumes of revolution and setting up triple integrals.
●NEW WEBASSIGN RESOURCES: New digital resources in WebAssign include Explore It interactive learning modules, the MindTap reader for interactive and mobile ebook access, enhanced remediation support, and improved problem types.
●NEW SUBHEADINGS: Additional subsections within chapters help instructors and students find key content more easily to make the text an even more helpful teaching and learning tool.
●NEW SCAFFOLDED EXERCISES: At the beginning of problem sets, new basic exercises reinforce key skills and build student confidence to prepare them for more rigorous exercises and conceptual understanding.

本書特色

●NEW WEBASSIGN RESOURCES: New digital resources in WebAssign include Explore It interactive learning modules, the MindTap reader for interactive and mobile ebook access, enhanced remediation support, and improved problem types.
●NEW EXPLANATIONS AND EXAMPLES: Careful refinements throughout provide even greater clarity on key concepts such as computing volumes of revolution and setting up triple integrals.
●PREREQUISITE SUPPORT: Four diagnostic tests in algebra, analytic geometry, functions, and trigonometry enable students to test their preexisting knowledge and brush up on skills. Quick Prep and Just-in-Time exercises in WebAssign refresh and reinforce prerequisite knowledge.
●STEM APPLICATIONS: Stewart/Clegg/Watson answers the question, "When will I use this?" by showing how Calculus is used as a problem-solving tool in fields such as physics, engineering, chemistry, biology, medicine and the social sciences.
●NEW SCAFFOLDED EXERCISES: At the beginning of problem sets, new basic exercises reinforce key skills and build student confidence to prepare them for more rigorous exercises and conceptual understanding.
●ENGAGING PROJECTS: A wealth of engaging projects reinforce concepts. "Writing Projects" ask students to compare present-day methods with those of the founders of Calculus. "Discovery Projects" anticipate results to be discussed later. "Applied Projects" feature real-world use of mathematics. "Laboratory Projects" anticipate results to be discussed later or encourage discovery through pattern recognition.
●PROBLEM-SOLVING EMPHASIS: George Polya’s problem-solving methodology is introduced at the beginning and reinforced throughout. "Strategies" sections help students select what techniques they'll need to solve problems in situations where the choice is not obvious and help them develop true problem-solving skills and intuition.
●CLEAR EXPOSITION: Dan Clegg and Saleem Watson have remained true to James Stewart's writing style by speaking clearly and directly to students, guiding them through key ideas, theorems, and problem-solving steps, and encouraging them to think as they read and learn calculus.
●QUALITY EXERCISES: With over 8,000 exercises in all, each exercise set carefully progresses from skill-development problems to more challenging problems involving applications and proofs. Conceptual exercises encourage the development of communication skills by explicitly requesting descriptions, conjectures, and explanations. More challenging “Problems Plus” exercises reinforce concepts by requiring students to apply techniques from more than one chapter of the text, and by patiently showing them how to approach a challenging problem.
●NEW SUBHEADINGS: Additional subsections within chapters help instructors and students find key content more easily to make the text an even more helpful teaching and learning tool.
●HELPFUL EXAMPLES: Every concept is supported by thoughtfully worked examples that encourage students to develop an analytic view of the subject. To provide further insight into mathematical concepts, many detailed examples display solutions graphically, analytically and/or numerically. Margin notes expand on and clarify the steps of the solution.

商品描述(中文翻譯)

本書序言

- 新的解釋和例子:在整本書中,仔細的改進提供了更清晰的關鍵概念,例如計算旋轉體積和設置三重積分。
- 新的WebAssign資源:WebAssign中的新數位資源包括探索互動學習模組、MindTap閱讀器以進行互動和移動電子書訪問、增強的補救支援和改進的問題類型。
- 新的子標題:章節內的額外小節有助於教師和學生更輕鬆地找到關鍵內容,使本書成為更有用的教學和學習工具。
- 新的階梯式練習:在問題集的開始部分,新的基礎練習強化關鍵技能,建立學生的信心,為他們準備更嚴格的練習和概念理解。

本書特色

- 新的WebAssign資源:WebAssign中的新數位資源包括探索互動學習模組、MindTap閱讀器以進行互動和移動電子書訪問、增強的補救支援和改進的問題類型。
- 新的解釋和例子:在整本書中,仔細的改進提供了更清晰的關鍵概念,例如計算旋轉體積和設置三重積分。
- 先備知識支援:代數、解析幾何、函數和三角函數的四個診斷測試使學生能夠測試他們的先前知識並提高技能。WebAssign中的快速準備和即時練習可以刷新和強化先備知識。
- STEM應用:Stewart/Clegg/Watson回答了「我什麼時候會用到這個?」的問題,展示了微積分在物理學、工程學、化學、生物學、醫學和社會科學等領域中作為解決問題的工具。
- 新的階梯式練習:在問題集的開始部分,新的基礎練習強化關鍵技能,建立學生的信心,為他們準備更嚴格的練習和概念理解。
- 吸引人的專案:豐富的專案強化概念。 「寫作專案」要求學生比較現代方法與微積分創始人的方法。「探索專案」預測稍後將要討論的結果。「應用專案」展示數學在現實世界中的應用。「實驗室專案」預測稍後將要討論的結果,或通過模式識別鼓勵發現。
- 強調解決問題:喬治·波利亞的解決問題方法論在開始時介紹並持續強化。「策略」部分幫助學生選擇在選擇不明顯的情況下解決問題所需的技巧,並幫助他們培養真正的解決問題能力和直覺。
- 清晰的陳述:丹·克萊格和塞利姆·沃森忠實於詹姆斯·斯圖爾特的寫作風格,直接清晰地與學生交流,引導他們理解關鍵思想、定理和解決問題的步驟,並鼓勵他們在閱讀和學習微積分時思考。
- 優質練習:全書共有超過8,000個練習題,每個練習集都從技能發展問題逐步進展到涉及應用和證明的更具挑戰性的問題。概念練習鼓勵通過明確要求描述、猜測和解釋來發展溝通能力。更具挑戰性的「額外問題」練習通過要求學生應用來自本書多個章節的技巧,並耐心地展示他們如何解決一個具有挑戰性的問題。
- 新的子標題:章節內的額外小節有助於教師和學生更輕鬆地找到關鍵內容,使本書成為更有用的教學和學習工具。
- 有用的例子:每個概念都有精心編排的例子支持。

目錄大綱

1. FUNCTIONS AND MODELS.
2. LIMITS AND DERIVATIVES.
3. DIFFERENTIATION RULES.
4. APPLICATIONS OF DIFFERENTIATION.
5. INTEGRALS.
6. APPLICATIONS OF INTEGRATION.
7. TECHNIQUES OF INTEGRATION.
8. FURTHER APPLICATIONS OF INTEGRATION.
9. DIFFERENTIAL EQUATIONS.
10. PARAMETRIC EQUATIONS AND POLAR COORDINATES.
11. SEQUENCES, SERIES, AND POWER SERIES.
12. VECTORS AND THE GEOMETRY OF SPACE.
13. VECTOR FUNCTIONS.
14. PARTIAL DERIVATIVES.
15. MULTIPLE INTEGRALS.
16. VECTOR CALCULUS.
APPENDIXES.
A: Numbers, Inequalities, and Absolute Values.
B: Coordinate Geometry and Lines.
C: Graphs of Second-Degree Equations.
D: Trigonometry.
E: Sigma Notation.
F: Proofs of Theorems.
G: The Logarithm Defined as an Integral.
H: Answers to Odd-Numbered Exercises.

目錄大綱(中文翻譯)

1. 函數與模型。
2. 極限與導數。
3. 微分規則。
4. 微分應用。
5. 積分。
6. 積分應用。
7. 積分技巧。
8. 進一步的積分應用。
9. 微分方程。
10. 參數方程與極坐標。
11. 數列、級數和冪級數。
12. 向量與空間幾何。
13. 向量函數。
14. 偏微分。
15. 多重積分。
16. 向量微積分。
附錄。
A: 數字、不等式和絕對值。
B: 座標幾何和直線。
C: 二次方程的圖形。
D: 三角學。
E: 西格瑪符號。
F: 定理的證明。
G: 將對數定義為積分。
H: 奇數編號練習的答案。