Essential Calculus Metric Version, 2/e (Custom Solutions)(Paperback)
James Stewart , Daniel K. Clegg , Saleem Watson
- 出版商: 聖智學習
- 出版日期: 2022-01-01
- 定價: $1,320
- 售價: 9.8 折 $1,294
- 語言: 英文
- 頁數: 872
- ISBN: 626954064X
- ISBN-13: 9786269540648
-
相關分類:
微積分 Calculus
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$580$568 -
$580$568 -
$780$764 -
$1,220$1,196 -
$1,280$1,254 -
$760$745 -
$840$756 -
$1,250$1,225 -
$880$862 -
$780$764 -
$1,200$1,176 -
$390$308 -
$1,580$1,548
相關主題
商品描述
本書序言
• More than 20% of the exercises are new:
Basic exercises have been added, where appropriate, near the beginning of exercise sets. These exercises are intended to build student confidence and reinforce understanding of the fundamental concepts of a section. Some new exercises include graphs intended to encourage students to understand how a graph facilitates the solution of a problem; these exercises complement subsequent exercises in which students need to supply their own graph. Some exercises have been structured in two stages, where part (a) asks for the setup and part (b) is the evaluation. This allows students to check their answer to part (a) before completing the problem. Some challenging and extended exercises have been added toward the end of selected exercise sets. Titles have been added to selected exercises when the exercise extends a concept discussed in the section.
• New examples have been added, and additional steps have been added to the solutions of some existing examples.
• Several sections have been restructured and new subheads added to focus the organization around key concepts.
• Many new graphs and illustrations have been added, and existing ones updated, to provide additional graphical insights into key concepts.
• A few new topics have been added and others expanded (within a section or in extended exercises) that were requested by reviewers.
• New projects have been added and some existing projects have been updated.
• Alternating series and absolute convergence are now covered in one section (10.5).
本書特色
• Conceptual Exercises
The most important way to foster conceptual understanding is through the problems that the instructor assigns. To that end we have included various types of problems. Some exercise sets begin with requests to explain the meanings of the basic concepts of the section and most exercise sets contain exercises designed to reinforce basic understanding. Other exercises test conceptual understanding through graphs or tables. Many exercises provide a graph to aid in visualization. Another type of exercise uses verbal descriptions to gauge conceptual understanding. We particularly value problems that combine and compare graphical, numerical, and algebraic approaches.
• Graded Exercise Sets
Each exercise set is carefully graded, progressing from basic conceptual exercises, to skill-development and graphical exercises, and then to more challenging exercises that often extend the concepts of the section, draw on concepts from previous sections, or involve applications or proofs.
• Real-World Data
Real-world data provide a tangible way to introduce, motivate, or illustrate the concepts of calculus. As a result, many of the examples and exercises deal with functions defined by such numerical data or graphs. These real-world data have been obtained by contacting companies and government agencies as well as researching on the Internet and in libraries.
• Projects
One way of involving students and making them active learners is to have them work (perhaps in groups) on extended projects that give a feeling of substantial accomplishment when completed. Applied Projects involve applications that are designed to appeal to the imagination of students. Discovery Projects anticipate results to be discussed later or encourage discovery through pattern recognition. Other discovery projects explore aspects of geometry: tetrahedra, hyperspheres, and intersections of three cylinders.
• Technology
When using technology, it is particularly important to clearly understand the concepts that underlie the images on the screen or the results of a calculation. When properly used, graphing calculators and computers are powerful tools for discovering and understanding those concepts. This textbook can be used either with or without technology-we use two special symbols to indicate clearly when a particular type of assistance from technology is required. The icon EB indicates an exercise that definitely requires the use of graphing software or a graphing calculator to aid in sketching a graph. (That is not to say that the technology can't be used on the other exercises as well.) The symbol [!] means that the assistance of software or a graphing calculator is needed beyond just graphing to complete the exercise. Freely available websites such as WolframAlpha.com or Symbolab.com are often suitable. In cases where the full resources of a computer algebra system, such as Maple or Mathematica, are needed, we state this in the exercise. Of course, technology doesn't make pencil and paper obsolete. Hand calculation and sketches are often preferable to technology for illustrating and reinforcing some concepts. Both instructors and students need to develop the ability to decide where using technology is appropriate and where more insight is gained by working out an exercise by hand.
商品描述(中文翻譯)
本書序言
- 超過20%的練習題是新的:
在適當的位置,我們新增了基礎練習題,旨在建立學生的信心,並加強對該節的基本概念的理解。一些新的練習題包括圖表,旨在鼓勵學生理解圖表如何解決問題;這些練習題與後續需要學生自己繪製圖表的練習題相輔相成。一些練習題分為兩個階段,其中(a)部分要求設置,(b)部分是評估。這使學生可以在完成問題之前檢查(a)部分的答案。在選定的練習題組末尾添加了一些具有挑戰性和延伸性的練習題。當練習題擴展了該節中討論的概念時,我們為選定的練習題添加了標題。
- 新增了一些示例,並在一些現有示例的解決方案中添加了額外步驟。
- 重新結構了幾個章節,並添加了新的小標題,以便圍繞關鍵概念進行組織。
- 添加了許多新的圖表和插圖,並更新了現有的圖表和插圖,以提供對關鍵概念的額外圖形洞察。
- 根據審稿人的要求,添加了一些新的主題,並擴展了其他主題(在節內或在延伸練習中)。
- 添加了新的專案,並更新了一些現有專案。
- 現在在一個節(10.5)中涵蓋了交錯級數和絕對收斂。
本書特色
- 概念練習題:
培養概念理解最重要的方式是通過教師分配的問題。為此,我們包含了各種類型的問題。一些練習題組以要求解釋該節基本概念的含義開始,大多數練習題組包含旨在加強基本理解的練習題。其他練習題通過圖表或表格測試概念理解。許多練習題提供圖表以幫助視覺化。另一種類型的練習題使用口述描述來評估概念理解。我們特別重視結合和比較圖形、數值和代數方法的問題。
- 分級練習題組:
每個練習題組都經過精心分級,從基本概念練習題,到技能發展和圖形練習題,再到更具挑戰性的練習題,這些練習題通常擴展了該節的概念,借鑒了前面節的概念,或涉及應用或證明。
- 現實世界數據:
現實世界數據提供了一種具體的方式來介紹、激發或說明微積分的概念。因此,許多示例和練習題涉及由這些數值數據或圖表定義的函數。這些現實世界數據是通過聯繫公司和政府機構,以及在互聯網和圖書館進行研究獲得的。
- 專案:
讓學生參與並成為積極學習者的一種方式是讓他們(也許是小組)參與延伸專案,完成時給予他們實質成就感。應用專案涉及設計能激發學生想像力的應用。探索專案預測稍後將要討論的結果,或通過模式識別鼓勵探索。其他探索專案探索幾何的各個方面:四面體、超球體和三個圓柱體的交點。
- 技術:
在使用技術時,清楚理解屏幕上圖像或計算結果背後的概念尤為重要。當正確使用時,繪圖計算器和計算機是發現和理解這些概念的強大工具。
作者簡介
The late James Stewart received his M.S. from Stanford University and his Ph.D. from the University of Toronto. He conducted research at the University of London and was influenced by the famous mathematician George Polya at Stanford University. Dr. Stewart most recently served as a professor of mathematics at McMaster University, and his research focused on harmonic analysis. Dr. Stewart authored a best-selling calculus textbook series, including CALCULUS, CALCULUS: EARLY TRANSCENDENTALS and CALCULUS: CONCEPTS AND CONTEXTS as well as a series of successful precalculus texts.
作者簡介(中文翻譯)
詹姆斯·斯圖爾特(James Stewart)故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故故
目錄大綱
1. FUNCTIONS AND LIMITS.
2. DERIVATIVES.
3. APPLICATION OF DIFFERENTIATION.
4. INTEGRALS.
5. APPLICATIONS OF INTEGRATION.
6. INVERSE FUNCTIONS: EXPONENTIAL, LOGARITHMIC, AND INVERSE TRIGONOMETRIC FUNCTIONS.
7. TECHNIQUES OF INTEGRATION.
8. FURTHER APPLICATIONS OF INTEGRATION.
9. PARAMETRIC EQUATIONS AND POLAR COORDINATES.
10. SEQUENCES, SERIES, AND POWER SERIES.
11. VECTOR AND THE GEOMETRY OF SPACE.
12. PARTIAL DERIVATIVES.
13. MULTIPLE INTEGRALS.
目錄大綱(中文翻譯)
1. 函數與極限。
2. 導數。
3. 微分應用。
4. 積分。
5. 積分應用。
6. 反函數:指數、對數和反三角函數。
7. 積分技巧。
8. 進一步的積分應用。
9. 參數方程和極坐標。
10. 數列、級數和冪級數。
11. 向量和空間幾何。
12. 偏導數。
13. 多重積分。