Online Stochastic Combinatorial Optimization
暫譯: 線上隨機組合優化

Pascal Van Hentenryck, Russell Bent

  • 出版商: MIT
  • 出版日期: 2006-10-01
  • 售價: $1,620
  • 貴賓價: 9.5$1,539
  • 語言: 英文
  • 頁數: 236
  • 裝訂: Hardcover
  • ISBN: 0262220806
  • ISBN-13: 9780262220804
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

Description

Online decision making under uncertainty and time constraints represents one of the most challenging problems for robust intelligent agents. In an increasingly dynamic, interconnected, and real-time world, intelligent systems must adapt dynamically to uncertainties, update existing plans to accommodate new requests and events, and produce high-quality decisions under severe time constraints. Such online decision-making applications are becoming increasingly common: ambulance dispatching and emergency city-evacuation routing, for example, are inherently online decision-making problems; other applications include packet scheduling for Internet communications and reservation systems. This book presents a novel framework, online stochastic optimization, to address this challenge.

This framework assumes that the distribution of future requests, or an approximation thereof, is available for sampling, as is the case in many applications that make either historical data or predictive models available. It assumes additionally that the distribution of future requests is independent of current decisions, which is also the case in a variety of applications and holds significant computational advantages. The book presents several online stochastic algorithms implementing the framework, provides performance guarantees, and demonstrates a variety of applications. It discusses how to relax some of the assumptions in using historical sampling and machine learning and analyzes different underlying algorithmic problems. And finally, the book discusses the framework's possible limitations and suggests directions for future research.

Pascal Van Hentenryck is Professor in the Department of Computer Science at Brown University. He is the author or editor of several MIT Press books.

Russell Bent is a Ph.D. graduate of Brown University, where he worked on online optimization. He recently joined the technical staff of Los Alamos National Laboratories. 


 

Table of Contents

 Preface 
 
1. Introduction 1
 
1.1 From A Priori to Online Stochastic Optimization 1
 
1.2 Online Stochastic Combinatorial Optimization 2
 
1.3 Online Anticipatory Algorithms 4
 
1.4 Online Stochastic Combinatorial Optimization in Context 5
 
1.5 Organization and Themes 13
 
I. ONLINE STOCHASTIC SCHEDULING 
 
2. Online Stochastic Scheduling 19
 
2.1 The Generic Offline Problem 19
 
2.2 The Online Problem 20
 
2.3 The Generic Online Algorithm 20
 
2.4 Properties of Online Stochastic Scheduling 22
 
2.5 Oblivious Algorithms 23
 
2.6 The Expectation Algorithm 24
 
2.7 The Consensus Algorithm 26
 
2.8 The Regret Algorithm 27
 
2.9 Immediate Decision Making 30
 
2.10 The Suboptimality Approximation Problem 31
 
2.11 Notes and Further Reading 33
 
3. Theoretical Analysis 35
 
3.1 Expected Loss 35
 
3.2 Local Errors 36
 
3.3 Bounding Local Errors 38
 
3.4 The Theoretical Results 40
 
3.5 Discussion on the Theoretical Assumptions 41
 
3.6 Notes and Further Reading 43
 
4. Packet Scheduling 45
 
4.1 The Packet Scheduling Problem 45
 
4.2 The Optimization Algorithm 46
 
4.3 The Greedy Algorithm is Competitive 50
 
4.4 The Suboptimality Approximation 51
 
4.5 Experimental Setting 53
 
4.6 Experimental Results 54
 
4.7 The Anticipativity Assumption 60
 
4.8 Notes and Further Reading 66
 
II. ONLINE STOCHASTIC RESERVATIONS 
 
5. Online Stochastic Reservations 71
 
5.1 The Offline Reservation Problem 71
 
5.2 The Online Problem 72
 
5.3 The Generic Online Algorithm 73
 
5.4 The Expectation Algorithm 74
 
5.5 The Consensus Algorithm 74
 
5.6 The Regret Algorithm 75
 
5.7 Cancellations 77
 
6. Online Multiknapsack Problems 79
 
6.1 Online Multiknapsack with Deadlines 79
 
6.2 The Suboptimality Approximation 81
 
6.3 Experimental Results 89
 
6.4 Notes and Further Reading 98
 
III. ONLINE STOCHASTIC ROUTING 
 
7. Vehicle Routing with Time Windows 103
 
7.1 Vehicle Dispatching and Routing 103
 
7.2 Large Neighborhood Search 107
 
7.3 Notes and Further Reading 112
 
8. Online Stochastic Routing 113
 
8.1 Online Stochastic Vehicle Routing 113
 
8.2 Online Single Vehicle Routing 116
 
8.3 Service Guarantees 118
 
8.4 A Waiting Strategy 120
 
8.5 A Relocation Strategy 121
 
8.6 Multiple Pointwise Decisions 122
 
8.7 Notes and Further Reading 125
 
9. Online Vehicle Dispatching 127
 
9.1 The Online Vehicle Dispatching Problems 127
 
9.2 Setting of the Algorithms 128
 
9.3 Experimental Results 129
 
9.4 Visualizations of the Algorithms 138
 
9.5 Notes and Further Reading 149
 
10. Online Vehicle Routing with Time Windows 153
 
10.1 The Online Instances 153
 
10.2 Experimental Setting 155
 
10.3 Experimental Results 156
 
10.4 Notes and Further Reading 165
 
IV. LEARNING AND HISTORICAL SAMPLING 
 
11. Learning Distributions 171
 
11.1 The Learning Framework 171
 
11.2 Hidden Markov Models 172
 
11.3 Learning Hidden Markov Models 174
 
11.4 Notes and Further Reading 182
 
12. Historical Sampling 185
 
12.1 Historical Averaging 185
 
1.2 Historical Sampling 186
 
V. SEQUENTIAL DECISION MAKING 
 
13. Markov Chance-Decision Processes 193
 
13.1 Motivation 193
 
13.2 Decision-Chance versus Chance-Decision 194
 
13.3 Equivalence of MDCPs and MCDPs 196
 
13.4 Online Anticipatory Algorithms 199
 
13.5 The Approximation Theorem for Anticipative MCDPs 202
 
13.6 The Anticipativity Assumption 208
 
13.7 Beyond Anticipativity 210
 
13.8 The General Approximation Theorem for MCDPs 214
 
13.9 Notes and Further Reading 218
 
 References 219
 
 Index 229

商品描述(中文翻譯)

**描述**
在不確定性和時間限制下的線上決策制定,代表了對於穩健智能代理最具挑戰性的問題之一。在一個日益動態、互聯和即時的世界中,智能系統必須動態適應不確定性,更新現有計劃以適應新的請求和事件,並在嚴格的時間限制下產出高品質的決策。這類線上決策應用變得越來越普遍:例如,救護車調度和緊急城市撤離路徑規劃,這些本質上都是線上決策問題;其他應用包括互聯網通信的封包排程和預約系統。本書提出了一個新穎的框架——線上隨機優化,以應對這一挑戰。

這個框架假設未來請求的分佈,或其近似值,可以進行取樣,這在許多應用中是可行的,因為它們提供了歷史數據或預測模型。此外,它還假設未來請求的分佈與當前決策是獨立的,這在各種應用中也是成立的,並且具有顯著的計算優勢。本書介紹了幾種實現該框架的線上隨機算法,提供性能保證,並展示了各種應用。它討論了如何放寬使用歷史取樣和機器學習的一些假設,並分析了不同的基礎算法問題。最後,本書討論了該框架可能的限制,並提出未來研究的方向。

Pascal Van Hentenryck 是布朗大學計算機科學系的教授。他是幾本麻省理工學院出版社書籍的作者或編輯。

Russell Bent 是布朗大學的博士畢業生,他在那裡研究線上優化。他最近加入了洛斯阿拉莫斯國家實驗室的技術團隊。

**目錄**
前言
1. 介紹
1.1 從先驗到線上隨機優化
1.2 線上隨機組合優化
1.3 線上預測算法
1.4 線上隨機組合優化的背景
1.5 組織與主題

I. 線上隨機排程
2. 線上隨機排程
2.1 一般離線問題
2.2 線上問題
2.3 一般線上算法
2.4 線上隨機排程的特性
2.5 忘卻算法
2.6 期望算法
2.7 共識算法
2.8 後悔算法
2.9 即時決策
2.10 次優化近似問題
2.11 註解與進一步閱讀

3. 理論分析
3.1 期望損失
3.2 局部錯誤
3.3 界定局部錯誤
3.4 理論結果
3.5 對理論假設的討論
3.6 註解與進一步閱讀

4. 封包排程
4.1 封包排程問題
4.2 優化算法
4.3 貪婪算法的競爭性
4.4 次優化近似
4.5 實驗設置
4.6 實驗結果
4.7 預測性假設
4.8 註解與進一步閱讀

II. 線上隨機預約
5. 線上隨機預約
5.1 離線預約問題
5.2 線上問題
5.3 一般線上算法
5.4 期望算法
5.5 共識算法
5.6 後悔算法
5.7 取消

6. 線上多背包問題
6.1 有截止日期的線上多背包
6.2 次優化近似
6.3 實驗結果
6.4 註解與進一步閱讀

III. 線上隨機路由
7. 帶時間窗口的車輛路由
7.1 車輛調度與路由
7.2 大鄰域搜尋
7.3 註解與進一步閱讀

8. 線上隨機路由
8.1 線上隨機車輛路由
8.2 線上單車輛路由
8.3 服務保證
8.4 等待策略
8.5 重新定位策略
8.6 多點決策
8.7 註解與進一步閱讀

9. 線上車輛調度
9.1 線上車輛調度問題
9.2 算法設置
9.3 實驗結果
9.4 算法的可視化
9.5 註解與進一步閱讀

10. 帶時間窗口的線上車輛路由
10.1 線上實例
10.2 實驗設置
10.3 實驗結果
10.4 註解與進一步閱讀

IV. 學習與歷史取樣
11. 學習分佈
11.1 學習框架
11.2 隱馬可夫模型
11.3 學習隱馬可夫模型
11.4 註解與進一步閱讀

12. 歷史取樣
12.1 歷史平均
12.2 歷史取樣

V. 序列決策制定
13. 馬可夫機會-決策過程
13.1 動機
13.2 決策-機會與機會-決策
13.3 MDCPs 與 MCDPs 的等價性
13.4 線上預測算法
13.5 預測性 MCDPs 的近似定理
13.6 預測性假設
13.7 超越預測性
13.8 MCDPs 的一般近似定理
13.9 註解與進一步閱讀

參考文獻
索引