Planning with Markov Decision Processes: An AI Perspective (Synthesis Lectures on Artificial Intelligence and Machine Learning)
暫譯: 以馬可夫決策過程進行規劃:人工智慧的視角(人工智慧與機器學習綜合講座)

Mausam, Andrey Kolobov

  • 出版商: Morgan & Claypool
  • 出版日期: 2012-07-03
  • 售價: $1,600
  • 貴賓價: 9.5$1,520
  • 語言: 英文
  • 頁數: 210
  • 裝訂: Paperback
  • ISBN: 1608458865
  • ISBN-13: 9781608458868
  • 相關分類: 人工智慧Machine Learning
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Markov Decision Processes (MDPs) are widely popular in Artificial Intelligence for modeling sequential decision-making scenarios with probabilistic dynamics. They are the framework of choice when designing an intelligent agent that needs to act for long periods of time in an environment where its actions could have uncertain outcomes. MDPs are actively researched in two related subareas of AI, probabilistic planning and reinforcement learning. Probabilistic planning assumes known models for the agent's goals and domain dynamics, and focuses on determining how the agent should behave to achieve its objectives. On the other hand, reinforcement learning additionally learns these models based on the feedback the agent gets from the environment.

This book provides a concise introduction to the use of MDPs for solving probabilistic planning problems, with an emphasis on the algorithmic perspective. It covers the whole spectrum of the field, from the basics to state-of-the-art optimal and approximation algorithms. We first describe the theoretical foundations of MDPs and the fundamental solution techniques for them. We then discuss modern optimal algorithms based on heuristic search and the use of structured representations. A major focus of the book is on the numerous approximation schemes for MDPs that have been developed in the AI literature. These include determinization-based approaches, sampling techniques, heuristic functions, dimensionality reduction, and hierarchical representations. Finally, we briefly introduce several extensions of the standard MDP classes that model and solve even more complex planning problems.

Table of Contents: Introduction / MDPs / Fundamental Algorithms / Heuristic Search Algorithms / Symbolic Algorithms / Approximation Algorithms / Advanced Notes

商品描述(中文翻譯)

馬可夫決策過程(Markov Decision Processes, MDPs)在人工智慧中廣泛應用於建模具有隨機動態的序列決策情境。當設計一個需要在環境中長時間行動且其行動可能產生不確定結果的智能代理時,MDPs 是首選的框架。MDPs 在人工智慧的兩個相關子領域中被積極研究,即概率規劃(probabilistic planning)和強化學習(reinforcement learning)。概率規劃假設代理的目標和領域動態的模型是已知的,並專注於確定代理應如何行為以達成其目標。另一方面,強化學習則基於代理從環境中獲得的反饋來學習這些模型。

本書提供了使用 MDPs 解決概率規劃問題的簡明介紹,重點在於算法的視角。它涵蓋了該領域的全範圍,從基礎知識到最先進的最優和近似算法。我們首先描述 MDPs 的理論基礎及其基本解決技術。接著,我們討論基於啟發式搜索(heuristic search)和結構化表示法的現代最優算法。本書的一個主要重點是人工智慧文獻中發展出的眾多 MDPs 近似方案,包括基於確定化的方式、取樣技術、啟發式函數、維度縮減和分層表示。最後,我們簡要介紹幾個擴展標準 MDP 類別的內容,以建模和解決更複雜的規劃問題。

目錄:介紹 / MDPs / 基本算法 / 啟發式搜索算法 / 符號算法 / 近似算法 / 進階筆記