Computationally Efficient Model Predictive Control Algorithms: A Neural Network Approach (Studies in Systems, Decision and Control)
暫譯: 計算效率高的模型預測控制演算法:神經網絡方法(系統、決策與控制研究)
Maciej Ławryńczuk
- 出版商: Springer
- 出版日期: 2014-02-04
- 售價: $4,200
- 貴賓價: 9.5 折 $3,990
- 語言: 英文
- 頁數: 316
- 裝訂: Hardcover
- ISBN: 3319042289
- ISBN-13: 9783319042282
-
相關分類:
Algorithms-data-structures、Machine Learning
海外代購書籍(需單獨結帳)
商品描述
This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include:
· A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction.
· Implementation details of the MPC algorithms for feed forward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models.
· The MPC algorithms based on neural multi-models (inspired by the idea of predictive control).
· The MPC algorithms with neural approximation with no on-line linearization.
· The MPC algorithms with guaranteed stability and robustness.
· Cooperation between the MPC algorithms and set-point optimization.
Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require demanding on-line nonlinear optimization. The presented simulation results demonstrate high accuracy and computational efficiency of the algorithms. For a few representative nonlinear benchmark processes, such as chemical reactors and a distillation column, for which the classical MPC algorithms based on linear models do not work properly, the trajectories obtained in the suboptimal MPC algorithms are very similar to those given by the ``ideal'' MPC algorithm with on-line nonlinear optimization repeated at each sampling instant. At the same time, the suboptimal MPC algorithms are significantly less computationally demanding.
商品描述(中文翻譯)
本書深入探討基於神經模型的計算效率高(次最佳)模型預測控制(Model Predictive Control, MPC)技術。所涉及的主題包括:
· 幾種次最佳 MPC 演算法,其中模型或預測軌跡的線性近似會在線上逐步計算並用於預測。
· 針對前饋感知器神經模型、神經哈默斯坦模型、神經維納模型和狀態空間神經模型的 MPC 演算法實作細節。
· 基於神經多模型的 MPC 演算法(受預測控制理念啟發)。
· 無需在線線性化的神經近似的 MPC 演算法。
· 具有穩定性和魯棒性保證的 MPC 演算法。
· MPC 演算法與設定點優化之間的合作。
由於線性化(或神經近似),所提出的次最佳演算法不需要要求高的在線非線性優化。所呈現的模擬結果顯示這些演算法具有高準確性和計算效率。對於一些代表性的非線性基準過程,例如化學反應器和蒸餾塔,傳統基於線性模型的 MPC 演算法無法正常運作,而在次最佳 MPC 演算法中獲得的軌跡與每個取樣時刻重複進行在線非線性優化的“理想” MPC 演算法所給出的軌跡非常相似。同時,次最佳 MPC 演算法的計算需求顯著較低。