Advances in Large-Margin Classifiers (Hardcover)
暫譯: 大型邊界分類器的進展 (精裝版)
Peter J. Bartlett, Bernhard Sch聛𥽋lkopf, Dale Schuurmans, Alex J Smola
- 出版商: MIT
- 出版日期: 2000-09-29
- 售價: $730
- 貴賓價: 9.5 折 $694
- 語言: 英文
- 頁數: 422
- 裝訂: Hardcover
- ISBN: 0262194481
- ISBN-13: 9780262194488
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$500$390 -
$620$484
商品描述
The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.
商品描述(中文翻譯)
大邊際的概念是分析許多不同數據分類方法的統一原則,包括提升法(boosting)、數學規劃、神經網絡和支持向量機(support vector machines)。事實上,影響分類的關鍵在於邊際或信心水平——即一個尺度參數——而非原始的訓練錯誤,這已成為處理分類器的重要工具。本書展示了這一理念如何應用於理論分析和算法設計。
本書提供了大邊際分類器的最新發展概述,檢視了與其他方法(例如,貝葉斯推斷)的聯繫,並識別該方法的優勢和劣勢,以及未來研究的方向。貢獻者包括 Manfred Opper、Vladimir Vapnik 和 Grace Wahba。