Learning and Inference in Computational Systems Biology (Hardcover)
暫譯: 計算系統生物學中的學習與推理 (精裝版)

Neil D. Lawrence, Mark Girolami, Magnus Rattray, Guido Sanguinetti

  • 出版商: MIT
  • 出版日期: 2010-02-01
  • 售價: $1,580
  • 語言: 英文
  • 頁數: 376
  • 裝訂: Hardcover
  • ISBN: 026201386X
  • ISBN-13: 9780262013864
  • 立即出貨 (庫存 < 3)

買這商品的人也買了...

商品描述

Computational systems biology aims to develop algorithms that uncover the structure and parameterization of the underlying mechanistic model—in other words, to answer specific questions about the underlying mechanisms of a biological system—in a process that can be thought of as learning or inference. This volume offers state-of-the-art perspectives from computational biology, statistics, modeling, and machine learning on new methodologies for learning and inference in biological networks.

The chapters offer practical approaches to biological inference problems ranging from genome-wide inference of genetic regulation to pathway-specific studies. Both deterministic models (based on ordinary differential equations) and stochastic models (which anticipate the increasing availability of data from small populations of cells) are considered. Several chapters emphasize Bayesian inference, so the editors have included an introduction to the philosophy of the Bayesian approach and an overview of current work on Bayesian inference. Taken together, the methods discussed by the experts in Learning and Inference in Computational Systems Biology provide a foundation upon which the next decade of research in systems biology can be built.

Contributors: Florence d'Alch e-Buc, John Angus, Matthew J. Beal, Nicholas Brunel, Ben Calderhead, Pei Gao, Mark Girolami, Andrew Golightly, Dirk Husmeier, Johannes Jaeger, Neil D. Lawrence, Juan Li, Kuang Lin, Pedro Mendes, Nicholas A. M. Monk, Eric Mjolsness, Manfred Opper, Claudia Rangel, Magnus Rattray, Andreas Ruttor, Guido Sanguinetti, Michalis Titsias, Vladislav Vyshemirsky, David L. Wild, Darren Wilkinson, Guy Yosiphon

Computational Molecular Biology series

商品描述(中文翻譯)

計算系統生物學旨在開發算法,以揭示基礎機制模型的結構和參數化——換句話說,就是回答有關生物系統基礎機制的具體問題,這一過程可以被視為學習推斷。本卷提供了來自計算生物學、統計學、建模和機器學習的最先進觀點,探討在生物網絡中進行學習和推斷的新方法。

各章節提供了針對生物推斷問題的實用方法,範圍從全基因組的遺傳調控推斷到特定途徑的研究。考慮了確定性模型(基於常微分方程)和隨機模型(預期來自小型細胞群體的數據日益可用)。幾個章節強調貝葉斯推斷,因此編輯們包含了對貝葉斯方法哲學的介紹以及當前貝葉斯推斷工作的概述。綜合來看,計算系統生物學中的學習與推斷專家所討論的方法為未來十年系統生物學的研究奠定了基礎。

貢獻者: Florence d'Alch e-Buc, John Angus, Matthew J. Beal, Nicholas Brunel, Ben Calderhead, Pei Gao, Mark Girolami, Andrew Golightly, Dirk Husmeier, Johannes Jaeger, Neil D. Lawrence, Juan Li, Kuang Lin, Pedro Mendes, Nicholas A. M. Monk, Eric Mjolsness, Manfred Opper, Claudia Rangel, Magnus Rattray, Andreas Ruttor, Guido Sanguinetti, Michalis Titsias, Vladislav Vyshemirsky, David L. Wild, Darren Wilkinson, Guy Yosiphon

計算分子生物學系列