Probabilistic Machine Learning: Advanced Topics (Hardcover)
暫譯: 機率機器學習:進階主題 (精裝版)

Murphy, Kevin P.

  • 出版商: MIT
  • 出版日期: 2023-08-15
  • 售價: $4,500
  • 貴賓價: 9.8$4,410
  • 語言: 英文
  • 頁數: 1360
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 0262048434
  • ISBN-13: 9780262048439
  • 相關分類: Machine Learning
  • 立即出貨(限量) (庫存=9)

買這商品的人也買了...

相關主題

商品描述

An advanced book for researchers and graduate students working in machine learning and statistics who want to learn about deep learning, Bayesian inference, generative models, and decision making under uncertainty.

An advanced counterpart to Probabilistic Machine Learning: An Introduction, this high-level textbook provides researchers and graduate students detailed coverage of cutting-edge topics in machine learning, including deep generative modeling, graphical models, Bayesian inference, reinforcement learning, and causality. This volume puts deep learning into a larger statistical context and unifies approaches based on deep learning with ones based on probabilistic modeling and inference. With contributions from top scientists and domain experts from places such as Google, DeepMind, Amazon, Purdue University, NYU, and the University of Washington, this rigorous book is essential to understanding the vital issues in machine learning.

 

  • Covers generation of high dimensional outputs, such as images, text, and graphs
  • Discusses methods for discovering insights about data, based on latent variable models
  • Considers training and testing under different distributions
  • Explores how to use probabilistic models and inference for causal inference and decision making
  • Features online Python code accompaniment

商品描述(中文翻譯)

一本針對從事機器學習和統計研究的研究人員及研究生的進階書籍,旨在學習深度學習、貝葉斯推斷、生成模型及不確定性下的決策。

這本高階教科書是Probabilistic Machine Learning: An Introduction的進階對應書,為研究人員和研究生提供了機器學習前沿主題的詳細介紹,包括深度生成建模、圖形模型、貝葉斯推斷、強化學習和因果關係。本書將深度學習置於更大的統計背景中,並將基於深度學習的方法與基於概率建模和推斷的方法統一起來。書中匯集了來自Google、DeepMind、Amazon、普渡大學、紐約大學和華盛頓大學等地的頂尖科學家和領域專家的貢獻,這本嚴謹的書籍對於理解機器學習中的重要議題至關重要。


  • 涵蓋高維輸出的生成,例如圖像、文本和圖形

  • 討論基於潛變量模型發現數據洞察的方法

  • 考慮在不同分佈下的訓練和測試

  • 探討如何使用概率模型和推斷進行因果推斷和決策制定

  • 提供線上Python程式碼配套

作者簡介

Kevin P. Murphy is a Research Scientist at Google in Mountain View, California, where he works on artificial intelligence, machine learning, and Bayesian modeling.

作者簡介(中文翻譯)

Kevin P. Murphy 是位於加州山景城的 Google 研究科學家,他專注於人工智慧、機器學習和貝葉斯建模。