Introduction to Natural Language Processing (Hardcover)
Jacob Eisenstein
- 出版商: MIT
- 出版日期: 2019-10-01
- 定價: $1,260
- 售價: 9.8 折 $1,235
- 語言: 英文
- 頁數: 536
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 0262042843
- ISBN-13: 9780262042840
-
相關分類:
Machine Learning、Text-mining、Data Science
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$1,323Data Mining : Concepts and Techniques, 3/e (Hardcover)
-
$1,870$1,777 -
$1,362Introduction to Machine Learning, 3/e (Hardcover)
-
$390$351 -
$1,617Deep Learning (Hardcover)
-
$360$284 -
$1,750$1,715 -
$1,590$1,511 -
$420$332 -
$2,670$2,537 -
$1,360$1,333 -
$1,420$1,392 -
$580$452 -
$580$458 -
$1,200$1,020 -
$505自然語言處理入門
-
$650$514 -
$1,340$1,273 -
$1,000$790 -
$1,200$948 -
$520$411 -
$690$538 -
$780$616 -
$780$616 -
$480$379
相關主題
商品描述
A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques.
This textbook provides a technical perspective on natural language processing--methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation.
The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.
商品描述(中文翻譯)
這本教科書提供了一個技術角度的自然語言處理,即建立能夠理解、生成和操作人類語言的電腦軟體的方法。它強調當代的數據驅動方法,專注於監督和非監督的機器學習技術。第一部分通過建立一套工具並將其應用於基於單詞的文本分析,來建立機器學習的基礎。第二部分介紹了語言的結構化表示,包括序列、樹和圖。第三部分探討了不同的語言意義表示和分析方法,從形式邏輯到神經詞嵌入。最後一部分對自然語言處理的三個轉型應用進行了章節式的探討:信息提取、機器翻譯和文本生成。章節結尾的練習包括紙筆分析和軟體實現兩種形式。
這本教科書綜合並提煉了廣泛而多樣的研究文獻,將當代的機器學習技術與該領域的語言和計算基礎相結合。它適用於高年級本科和研究生課程,並可作為軟體工程師和數據科學家的參考資料。讀者應具備計算機編程和大學水平的數學背景。通過掌握所呈現的材料,學生將具備構建和分析新型自然語言處理系統的技術能力,並能理解該領域的最新研究成果。
作者簡介
Jacob Eisenstein works at Google as a research scientist. He was previously on the faculty in the School of Interactive Computing at Georgia Institute of Technology.
acob Eisenstein is a researcher and teacher of natural language processing, a research field with the goal of enabling computers to understand and produce human language. Jacob's work emphasizes connections from natural language processing to machine learning and computational social science. His textbook on natural language processing is a synthesis of years of teaching at the undergraduate and graduate level at Georgia Tech, where he joined the faculty in 2012. Jacob is currently a research scientist at Google, and retains an adjunct appoint at Georgia Tech.
作者簡介(中文翻譯)
Jacob Eisenstein在Google擔任研究科學家。他之前在喬治亞理工學院的互動計算學院任教。
Jacob Eisenstein是自然語言處理的研究員和教師,該研究領域的目標是使計算機能夠理解和生成人類語言。Jacob的工作強調自然語言處理與機器學習和計算社會科學的聯繫。他的自然語言處理教科書是多年在喬治亞理工學院本科和研究生課程教學的綜合。他於2012年加入喬治亞理工學院任教,目前在Google擔任研究科學家,並保留在喬治亞理工學院的兼職職位。