買這商品的人也買了...
-
$750$675 -
$480$379 -
$880$695 -
$650$507 -
$450$383 -
$270$213 -
$980$774 -
$650$507 -
$450$356 -
$650$553 -
$590$466 -
$650$553 -
$520$411 -
$650$514 -
$580$522 -
$620$490 -
$580$522 -
$350$277 -
$620$527 -
$750$638 -
$820$648 -
$580$493 -
$890$757 -
$490$387 -
$520$416
相關主題
商品描述
Description
Evolutionary computation, the use of evolutionary systems as computational processes for solving complex problems, is a tool used by computer scientists and engineers who want to harness the power of evolution to build useful new artifacts, by biologists interested in developing and testing better models of natural evolutionary systems, and by artificial life scientists for designing and implementing new artificial evolutionary worlds. In this clear and comprehensive introduction to the field, Kenneth De Jong presents an integrated view of the state of the art in evolutionary computation. Although other books have described such particular areas of the field as genetic algorithms, genetic programming, evolution strategies, and evolutionary programming, Evolutionary Computation is noteworthy for considering these systems as specific instances of a more general class of evolutionary algorithms. This useful overview of a fragmented field is suitable for classroom use or as a reference for computer scientists and engineers.
Kenneth A. De Jong is Professor of Computer Science at George Mason University and the founding editor of the journal Evolutionary Computation (MIT Press).
Table of Contents
1 Introduction 1
1.1 Basic Evolutionary Processes 1
1.2 EV: A Simple Evolutionary System 3
1.3 EV on a Simple Fitness Landscape 6
1.4 EV on a More Complex Fitness Landscape 15
1.5 Evolutionary Systems as Problem Solvers 19
1.6 Exercises 21
2 A Historical Perspective 23
2.1 Early Algorithmic Views 23
2.2 The Catalytic 1960s 24
2.3 The Explorative 1970s 25
2.4 The Exploitative 1980s 27
2.5 The Unifying 1990s 29
2.6 The Twenty-first Century: Mature Expansion 29
2.7 Summary 31
3 Canonical Evolutionary Algorithms 33
3.1 Introduction 33
3.2 EV(m,n) 33
3.3 Evolutionary Programming 34
3.4 Evolution Strategies 36
3.5 Genetic Algorithms 40
3.6 Summary 47
4 A Unified View of Simple EAs 49
4.1 A Common Framework 49
4.2 Population Size 50
4.3 Selection 54
4.4 Reproductive Mechanisms 61
4.5 Summary 69
5 Evolutionary Algorithms as Problem Solvers 71
5.1 Simple EAs as Parallel Adaptive Search 71
5.2 EA-based Optimization 80
5.3 EA-Based Search 105
5.4 EA-Based Machine Learning 107
5.5 EA-Based Automated Programming 109
5.6 EA-Based Adaptation 112
5.7 Summary 113
6 Evolutionary Computation Theory 115
6.1 Introduction 115
6.2 Analyzing EA Dynamics 117
6.3 Selection-Only Models 120
6.4 Reproduction-Only Models 141
6.5 Selection and Reproduction Interactions 160
6.6 Representation 185
6.7 Landscape Analysis 188
6.8 Models of Canonical EAs 189
6.9 Application-Oriented Theories 205
6.10 Summary 209
7 Advanced EC Topics 211
7.1 Self-adapting EAs 211
7.2 Dynamic Landscapes 213
7.3 Exploiting Parallelism 219
7.4 Evolving Executable Objects 221
7.5 Multi-objective EAs 223
7.6 Hybrid EAs 224
7.7 Biologically Inspired Extensions 225
7.8 Summary 230
8 The Road Ahead 231
8.1 Modeling General Evolutionary Systems 231
8.2 More Unification 232
8.3 Summary 232
Appendix A: Source Code Overview
A.1 EC1: A Very Simple EC System 233
A.2 EC2: A More Interesting EC System 236
A.3 EC3: A More Flexible EC System 237
A.4 EC4: An EC Research System 240
Bibliography 241
Index 253
商品描述(中文翻譯)
描述
進化計算是將進化系統作為解決複雜問題的計算過程的工具,被計算機科學家和工程師用於利用進化的力量來建立有用的新產物,被生物學家用於開發和測試更好的自然進化系統模型,並被人工生命科學家用於設計和實施新的人工進化世界。在這本對該領域的清晰而全面的介紹中,Kenneth De Jong提出了進化計算的最新發展。儘管其他書籍已經描述了遺傳算法、遺傳編程、進化策略和進化編程等特定領域,但《進化計算》之所以引人注目,是因為它將這些系統視為更一般的進化算法的具體實例。這本對一個分散領域的有用概述適合作為課堂教材或計算機科學家和工程師的參考。
目錄
1 引言 1
1.1 基本進化過程 1
1.2 EV:一個簡單的進化系統 3
1.3 在簡單的適應度景觀上的EV 6
1.4 在更複雜的適應度景觀上的EV 15
1.5 進化系統作為問題解決者 19
1.6 練習 21
2 歷史觀點 23
2.1 早期算法觀點 23
2.2 催化劑的1960年代 24
2.3 探索性的1970年代 25
2.4 剝削性的1980年代 27
2.5 統一的1990年代 29
2.6 21世紀:成熟擴展 29
2.7 摘要 31
3 經典進化算法 33
3.1 簡介 33
3.2 EV(m,n) 33
3.3 進化編程 34
3.4 進化策略 36
3.5 遺傳算法 40
3.6 摘要 47
4 簡單EA的統一觀點 49
4.1 一個共同框架 49