Creative Evolutionary Systems (Hardcover)
暫譯: 創意進化系統 (精裝版)
David W. Corne, Peter J. Bentley
- 出版商: Morgan Kaufmann
- 出版日期: 2001-07-30
- 定價: $2,450
- 售價: 8.0 折 $1,960
- 語言: 英文
- 頁數: 576
- 裝訂: Hardcover
- ISBN: 1558606734
- ISBN-13: 9781558606739
-
相關分類:
人工智慧、程式語言
立即出貨 (庫存=1)
買這商品的人也買了...
-
$580$458 -
$980$774 -
$1,030$1,009 -
$2,380$2,261 -
$1,650$1,568 -
$690$587 -
$420$328 -
$780$741 -
$550$435 -
$750$638 -
$620$527 -
$490$387 -
$650$514 -
$580$458 -
$760$600 -
$590$466 -
$690$538 -
$750$638 -
$720$569 -
$560$476 -
$390$304 -
$880$695 -
$520$411 -
$7,670$7,287 -
$1,650$1,568
商品描述
This book takes a fresh look at creativity, exploring what it is and how
the actions of evolution can resemble it. Examples of novel evolved solutions
are presented in a variety of creative disciplines. The editors have compiled
contributions by leading researchers in each discipline.
If you are a savvy and curious computing professional, a
computer-literate artist, musician or designer, or a specialist in evolutionary
computation and its applications, you will find this a fascinating survey of the
most interesting work being done in the area today
Contents
Foreword
An Introduction to Creative Evolutionary Systems
By Peter J. Bentley
and David W. Corne
- Introduction
AI and Creativity
Evolutionary Computation
Creative Evolutionary Systems
Is Evolution Creative?
PART I - Evolutionary Creativity
Chapter 1 - Creativity in Evolution: Individuals, Interactions,
and Environments
By Tim Taylor
- 1.1 Introduction
1.2 Creativity and Opened-Ended Evolution
1.3 Design Issues
- 1.3.1 Von Neumann’s Architecture for Self-Reproduction
1.3.2 Tierra
1.3.3 Implicit versus Explicit Encoding
1.3.4 Ability to Perform Other Tasks
1.3.5 Embeddedness in the Arena of Competition and Richness of Interactions
1.3.6 Materiality
1.4 A Full Specification For An Open-Ended Evolutionary Process
- 1.4.1 Waddington’s Paradigm for an Evolutionary Process
1.5 Conclusions
Acknowledgments
References
Chapter 2 - Recognizability of the Idea: The Evolutionary
Process of Argenia
By Celestino Soddu
- 2.1 Introduction
2.2 Recognizability, Identity, And Complexity
2.3 Evolutionary Codes: Artificial DNA
2.4 Natural/Artificial Complexity
2.5 Giotto, A Medieval Idea In Evolution
2.6 Rome, Future Scenarios
2.7 Basilica, Generative Software To Design Complexity
2.8 Madrid and Milan, Generated Architecture
2.9 Argenìa, The Natural Industrial Object, And The Artificial Uniqueness Of Species
2.10 Argenìc Art: Picasso
2.11 Conclusions
References
Chapter 3 - Breeding Aesthetic Objects: Art and Artificial
Evolution
By Mitchell Whitelaw
- 3.1 Introduction
3.2 Breeding Aesthetic Objects
- 3.2.1 A Case Study—Steven Rooke
3.3 Breeding and Creation
- 3.3.1 Creative Agency and the Breeding Process
3.3.2 The Evolved Aesthetic Object
3.4 Limits
3.5 Driessens and Verstappen—An Alternative Approach
3.6 Conclusions
References
Chapter 4 - The Beer Can Theory of Creativity
By Liane
Gabora
- 4.1 Introduction
4.2 Culture As An Evolutionary Process
- 4.2.1 Variation and Convergence in Biology and Culture
4.2.2 Is More Than One Mind Necessary for Ideas to Evolve?
4.2.3 Meme and Variations: A Computer Model of Cultural Evolution
4.2.4 Breadth-First versus Depth-First Exploration
4.2.5 Dampening Arbitrary Associations and Forging Meaningful Ones
4.3 Creativity as The Origin Of Culture
- 4.3.1 Theoretical Evidence
4.3.2 Archeological Evidence
4.3.3 Evidence from Animal Behavior
4.4 What Caused the Onset of Creativity?
4.5 Conclusions
Acknowledgments
References
PART II Evolutionary Music
Chapter 5 - GenJam: Evolution of a Jazz Improviser
By
John A. Biles
- 5.1 Introduction
5.2 Overview and Architecture
5.3 Representations
5.4 Genetic Operators and Training
- 5.4.1 Crossover
5.4.2 Musically Meaningful Mutation
5.5 Real-Time Interaction
5.6 Conclusions
References
Chapter 6 - On the Origins and Evolution of Music in Virtual
Worlds
By Eduardo Reck Miranda
- 6.1 Introduction
6.2 Evolutionary Modeling
- 6.2.1 Transformation and Selection
6.2.2 Coevolution
6.2.3 Self-organization
6.2.4 Level Formation
6.3 Evolving Sound With Cellular Automata
- 6.3.1 The Basics of Cellular Automata
6.3.2 The Cellular Automaton Used in Our System
6.3.3 The Synthesis Engine
6.4 Commentary On The Results
6.5 Conclusions
Acknowledgments
References
Chapter 7 - Vox Populi: Evolutionary Computation for Music
Evolution
By Artemis Moroni, Jônatas Manzolli, Fernando Von Zuben, and
Ricardo Gudwin
- 7.1 Introduction
7.2 Sound Attributes
7.3 Evolutionary Musical Cycle
- 7.3.1 The Voices Population
7.3.2 The Rhythm of the Evolution
7.4 Fitness Evaluation
- 7.4.1 The Consonance Criterion
7.4.2 Melodic Fitness
7.4.3 Harmonic Fitness
7.4.4 Voice Range Criterion
7.4.5 Musical Fitness
7.5 Interface And Parameter Control
7.6 Experiments
7.7 Conclusions
Acknowledgments
References
Chapter 8 - The Sound Gallery—An Interactive A-Life Artwork
By Sam Woolf and Adrian Thompson
- 8.1 Introduction
8.2 Evolvable Hardware
- 8.2.1 Reconfigurable Chips
8.3 Gallery Setup
- 8.3.1 Setting
8.3.2 Sensing Systems
8.4 Contextualization: Artificial Life and Art
- 8.4.1 Evolutionary Algorithms and Visual Arts
8.4.2 Evolutionary Algorithms and Music
8.4.3 Interactive Genetic Art
8.4.4 Interactive, Adaptive, and Autonomous (Nongenetic) Artworks
8.5 The Sound Gallery Algorithms
- 8.5.1 Two-Phase Hill-Climbing/ Island Model GA
8.5.2 Hill-climbing Phase
8.5.3 Island Model Genetic Algorithm Phase
8.5.4 The Need for Aging
8.5.5 Encoding Scheme
8.5.6 The Fitness Function
8.5.7 galSim
8.6 The Experiment
- 8.6.1 Results
8.7 Conclusions
Acknowledgments
References
Contents
PART III Creative Evolutionary Design
Chapter 9 - Creative Design and the Generative Evolutionary
Paradigm
By John Frazer
- 9.1 Introduction
9.2 The Adaptive Model From Nature
9.3 The Generative Evolutionary Paradigm
9.4 Problems With The Paradigm
9.5 Concept Seeding Approach
9.6 The Reptile Demonstration
9.7 Universal State Space Modeler
9.8 Logic Fields
9.9 Returning to the Analogy with Nature
9.10 Conclusions
References
Chapter 10 - Genetic Programming: Biologically
Inspired
Computation That Exhibits Creativity in
Producing
Human-Competitive Results
By John R. Koza, Forrest H.
Bennett III, David Andre, and
Martin A. Keane
- 10.1 Introduction
10.2 Inventiveness And Creativity
10.3 Genetic Programming
10.4 Applying Genetic Programming To Circuit Synthesis
- 10.4.1 Campbell 1917 Ladder Filter Patent
10.4.2 Zobel 1925 "M-Derived Half Section" Patent
10.4.3 Cauer 1934–1936 Elliptic Filter Patents
10.4.4 Amplifier, Computational, Temperature-Sensing, Voltage Reference, and
Other Circuits
10.5 Topology, Sizing, Placement, and Routing Of Circuits Contents
10.6 Automatic Synthesis Of Controllers By Means Of Genetic Programming
- 10.6.1 Robust Controller for a Two-Lag Plant
10.7 The Illogical Nature Of Creativity And Evolution
10.8 Conclusions
References
Chapeter 11 - Toward a Symbiotic Coevolutionary Approach to
Architecture
By Helen Jackson
- 11.1 Introduction
11.2 Lindenmayer Systems
- 11.2.1 Example L-Systems
11.2.2 The Isospatial Grid
11.2.3 Spatial Embryology
11.3 Artificial Selection
- 11.3.1 The Eyeball Test
11.4 Single-Goal Evolution
- 11.4.1 "Generic Function" as Fitness Function
11.4.2 Evolution toward Low i-Values
11.4.3 Structural Stability
11.4.4 Architecture As a Multigoal Task
11.4.5 Dual-Goal Evolution
11.5 Representation, Systems, And Symbiosis
- 11.5.1 Coevolution
11.5.2 Naïve Architectural Form Representation
11.5.3 Spatial Embryology
11.6 Conclusions
Acknowledgments
References
Chapter 12 - Using Evolutionary Algorithms to Aid Designers of
Architectural Structures
By Peter von Buelow
- 12.1 Introduction
12.2 Analysis Tools Vs. Design Tools
12.3 Advantages Of Evolutionary Systems In Design Contents
- 12.3.1 Use of Populations
12.3.2 Recombination and Mutation
12.3.3 Wide Search of Design Space
12.3.4 No Knowledge of the Objective Function
12.3.5 Imitation of Human Design Process
12.3.6 Can Learn from Designer
12.4 Characteristics of an IGDT
- 12.4.1 Definition of the IGDT Concept
12.4.2 Relation of IGDT to Design Process
12.5 Mechanics of an IGDT
12.6 IGDT Operation
- 12.6.1 Problem Definition
12.6.2 Initial IGDT Generation
12.6.3 Initial Generation with Designer Selection/Interaction
12.6.4 Second-Generation IGDT Response
12.6.5 Second-Generation Designer Interaction
12.6.6 Third Generation
12.7 Conclusions
Acknowledgments
References
PART IV Evolutionary Art
Chapter 13 - Eons of Genetically Evolved Algorithmic Images
By Steven Rooke
- 13.1 Introduction
13.2 Using GP for Art
- 13.2.1 Genetic Variation
13.2.2 Genetic Library
13.2.3 Functions and Node Internals
13.2.4 A Typical Run
13.3 Horizon Lines And Fantasy Landscapes
13.4 Genetic Fractals
- 13.4.1 Second-Order Subtleties of Orbit Trajectories during Iteration in
the Complex Plane
13.5 The Genetic Cross Dissolve
13.6 What Is It?
- 13.6.1 Constraints of Color and Form
13.6.2 A Joyride for the Visual Cortex?
13.6.3 Approaching the Organic
13.7 Conclusions
References
Chapter 14 - Art, Robots, and Evolution as a Tool for
Creativity
By Luigi Pagliarini and Henrik Hautop Lund
- 14.1 Introduction
14.2 The Social Context Of Electronics
- 14.2.1 Where Electronics Acts
14.2.2 How Technology Influences Art (the World)
14.2.3 How Technology Gets Feedback (from Art and the World)
14.3 What Artist?
- 14.3.1 Two Different Concepts or Aspects of the Artist
14.3.2 Art and Human Language: The "Immaterial" Artist
14.3.3 Art and Human Technique: The "Material" Artist
14.4 Electronic Art
- 14.4.1 A New Electronic Space
14.4.2 The "Material" Electronic Artist
14.4.3 The "Immaterial" Artist and the Uses of Electronics
14.4.4 Example—The Artificial Painter
14.5 Alive Art
- 14.5.1 Other Artistic Movements Based on Electronics
14.5.2 Alive Art
14.5.3 The Aliver
14.5.4 The "Alive Art Effect"
14.5.5 Example—LEGO Robot Artists
14.6 Conclusions
References
Chapter 15 - Stepping Stones in the Mist
By Paul Brown
- 15.1 Introduction
15.2 On My Approach as an Artist—A Disclaimer
15.3 Major Influences
15.4 Historical Work—1960s and 1970s
15.5 Early Computer Work
15.6 Recent Work
15.7 Current And Future Directions
15.8 Conclusions
Acknowledgments
References
Chapter 16 - Evolutionary Generation of Faces 409
By
Peter J. B. Hancock and Charlie D. Frowd
- 16.1 Introduction
- 16.1.1 Eigenfaces
16.1.2 Evolutionary Face Generator System
16.2 Testing
- 16.2.1 Apparatus
16.2.2 Generation of Face Images
16.2.3 Evolutionary Algorithm
16.2.4 Participants
16.3 Results
16.4 Discussion
16.5 Conclusions
Acknowledgments
References
Chapter 17 - The Escher Evolver: Evolution to the People
By A. E. Eiben, R. Nabuurs, and I. Booij
- 17.1 Introduction
17.2 The Mathematical System Behind Escher’s Tiling
17.3 Evolutionary Algorithm Design
- 17.3.1 Representation
17.3.2 Ground Shape and Transformation System
17.3.3 Genetic Operators: Mutation and Crossover
17.3.4 Selection Mechanism
17.4 Implementation and The Working of The System
- 17.4.1 Stand-Alone Version
17.4.2 First Networked Version
17.4.3 Second Networked Version
17.5 Conclusions
Acknowledgments
References
PART V Evolutionary Innovation
Chapter 18 - The Genetic Algorithm as a Discovery Engine:
Strange
Circuits and New Principles
By Julian F. Miller, Tatiana
Kalganova, Natalia Lipnitskaya, and Dominic Job
- 18.1 Introduction
18.2 The Space of All Representations
18.3 Evolutionary Algorithms That Assemble Electronic Circuits From A
Collection of Available Components
- 18.3.1 Binary Circuit Symbols
18.3.2 Multiple-Valued Circuits
18.4 Results
- 18.4.1 One-Bit Adder
18.4.2 Two-Bit Adder
18.4.3 Two-Bit Multiplier
18.4.4 Three-Bit Multiplier
18.4.5 Multiple-Valued One-Digit Adder with Carry
18.5 Fingerprinting and Principle Extraction
18.6 Conclusions
References
Chapter 19 - Discovering Novel Fighter Combat
Maneuvers:
Simulating Test Pilot Creativity
By R. E. Smith, B. A.
Dike, B. Ravichandran, A. El-Fallah, and R. K. Mehra
- 19.1 Introduction
19.2 Fighter Aircraft Maneuvering
19.3 Genetics-Based Machine Learning
- 19.3.1 Learning Classifier Systems
19.3.2 The LCS Used Here
19.4 "One-Sided Learning" Results
19.5 "Two-Sided Learning" Results
19.6 Differences In Goals And Techniques
19.6.1 Implications of This Goal
19.7 Conclusions
Acknowledgments
References
Chapter 20 - Innovative Antenna Design Using Genetic
Algorithms
By Derek S. Linden
- 20.1 Introduction
20.2 Antenna Basics
20.3 Conventional Designs and Unconventional Applications: The Yagi-Uda Antenna
20.4 Unconventional Designs and Conventional Applications: Crooked-Wire
And Treelike Genetic Antennas
- 20.4.1 The Crooked-Wire Genetic Antenna
20.4.2 Treelike Genetic Antennas
20.5 Conclusions
References
Chapter 21 - Evolutionary Techniques in Physical Robotics
By Jordan B. Pollack, Hod Lipson, Sevan Ficici, Pablo Funes,
Greg
Hornby, and Richard A. Watson
- 21.1 Introduction
21.2 Coevolution
21.3 Research Thrusts
21.4 Evolution In Simulation
21.5 Buildable Simulation
21.6 Evolution and Construction of Electromechanical Systems
21.7 Embodied Evolution
21.8 Conclusions
Acknowledgments
References
Chapter 22 - Patenting of Novel Molecules Designed via
Evolutionary Search
By Shail Patel, Ian Stott, Manmohan Bhakoo, and
Peter Elliott
- 22.1 Introduction
22.2 Design Cycle
22.3 Hypothesis: Mechanism Of Action
22.4 Experimental Measures And Modeling Techniques
- 22.4.1 Molecular Modeling
22.4.2 Neural Networks
22.5 Evolution
22.6 Patent Application
- 22.6.1 Comparing Patent Spaces
22.7 Conclusions
References
Index
商品描述(中文翻譯)
使用進化來解決創意問題是當今計算機科學中最令人興奮且潛在重要的領域之一。進化計算是一種利用源自自然進化的機制來解決問題或生成設計的方法。本書專注於將進化計算中的重要思想應用於創意領域,如藝術、音樂、建築和設計。它展示了人類互動、新的表現形式以及開放式進化等方法如何擴展進化計算的能力,從優化現有解決方案到創新和生成全新且原創的解決方案。
本書對創造力進行了全新的探討,探索其本質以及進化的行為如何與之相似。書中展示了各種創意學科中新穎的進化解決方案的例子。編輯們匯集了各學科領域內領先研究者的貢獻。
如果您是一位精明且好奇的計算專業人士,或是一位具備計算機知識的藝術家、音樂家或設計師,或者是進化計算及其應用的專家,您會發現這是對當前該領域最有趣工作的迷人調查。
**內容**
前言
創意進化系統簡介
作者:Peter J. Bentley 和 David W. Corne
- 介紹
- 人工智慧與創造力
- 進化計算
- 創意進化系統
- 進化是否具創造性?
**第一部分 - 進化創造力**
**第1章 - 進化中的創造力:個體、互動與環境**
作者:Tim Taylor
- 1.1 介紹
- 1.2 創造力與開放式進化
- 1.3 設計問題
- 1.3.1 自我複製的馮·諾依曼架構
- 1.3.2 Tierra
- 1.3.3 隱式與顯式編碼
- 1.3.4 執行其他任務的能力
- 1.3.5 競爭場域中的嵌入性與互動的豐富性
- 1.3.6 物質性
- 1.4 開放式進化過程的完整規範
- 1.4.1 Waddington 的進化過程範式
- 1.5 結論
- 致謝
- 參考文獻
**第2章 - 概念的可識別性:Argenia 的進化過程**
作者:Celestino Soddu
- 2.1 介紹
- 2.2 可識別性、身份與複雜性
- 2.3 進化代碼:人工 DNA
- 2.4 自然/人工複雜性
- 2.5 Giotto,進化中的中世紀思想
- 2.6 羅馬,未來情景
- 2.7 Basilica,設計複雜性的生成軟體
- 2.8 馬德里與米蘭,生成的建築
- 2.9 Argenia,自然工業物體與物種的人工獨特性
- 2.10 Argenic 藝術:畢卡索
- 2.11 結論
- 參考文獻
**第3章 - 繁殖美學物體:藝術與人工進化**
作者:Mitchell Whitelaw
- 3.1 介紹
- 3.2 繁殖美學物體
- 3.2.1 案例研究—Steven Rooke
- 3.3 繁殖與創造
- 3.3.1 創造性代理與繁殖過程
- 3.3.2 進化的美學物體
- 3.4 限制
- 3.5 Driessens 和 Verstappen—替代方法
- 3.6 結論
- 參考文獻
**第4章 - 啤酒罐創造力理論**
作者:Liane Gabora
- 4.1 介紹
- 4.2 文化作為進化過程
- 4.2.1 生物學與文化中的變異與收斂
- 4.2.2 進化是否需要多個心智?
- 4.2.3 Meme 與變異:文化進化的計算模型
- 4.2.4 廣度優先與深度優先探索
- 4.2.5 減少任意聯想並形成有意義的聯想
- 4.3 創造力作為文化的起源
- 4.3.1 理論證據
- 4.3.2 考古證據
- 4.3.3 動物行為的證據
- 4.4 什麼導致創造力的出現?
- 4.5 結論
- 致謝
- 參考文獻
**第二部分 - 進化音樂**
**第5章 - GenJam:爵士即興演奏者的進化**
作者:John A. Biles
- 5.1 介紹
- 5.2 概述與架構
- 5.3 表現形式
- 5.4 基因運算子與訓練
- 5.4.1 交叉
- 5.4.2 音樂意義的突變
- 5.5 實時互動
- 5.6 結論
- 參考文獻
**第6章 - 虛擬世界中音樂的起源與進化**
作者:Eduardo Reck Miranda
- 6.1 介紹
- 6.2 進化建模
- 6.2.1 轉換與選擇
- 6.2.2 共同進化
- 6.2.3 自我組織
- 6.2.4 層級形成
- 6.3 使用細胞自動機進化聲音
- 6.3.1 細胞自動機的基本原理
- 6.3.2 我們系統中使用的細胞自動機
- 6.3.3 合成引擎
- 6.4 對結果的評論
- 6.5 結論
- 致謝
- 參考文獻
**第7章 - Vox Populi:音樂進化的進化計算**
作者:Artemis Moroni, Jônatas Manzolli, Fernando Von Zuben, 和 Ricardo Gudwin
- 7.1 介紹
- 7.2 聲音屬性
- 7.3 進化音樂循環
- 7.3.1 聲音族群
- 7.3.2 進化的節奏
- 7.4 適應度評估
- 7.4.1 和聲標準
- 7.4.2 旋律適應度
- 7.4.3 和聲適應度
- 7.4.4 聲音範圍標準
- 7.4.5 音樂適應度
- 7.5 介面與參數控制
- 7.6 實驗
- 7.7 結論
- 致謝
- 參考文獻
**第8章 - 聲音畫廊—互動式生命藝術作品**
作者:Sam Woolf 和 Adrian Thompson
- 8.1 介紹
- 8.2 可進化硬體
- 8.2.1 可重組晶片
- 8.3 畫廊設置
- 8.3.1 設定
- 8.3.2 感測系統
- 8.4 上下文化:人工生命與藝術
- 8.4.1 進化演算法與視覺藝術
- 8.4.2 進化演算法與音樂
- 8.4.3 互動式基因藝術
- 8.4.4 互動式、自適應及自主(非基因)藝術作品
- 8.5 聲音畫廊演算法
- 8.5.1 兩階段爬坡/島模型遺傳演算法
- 8.5.2 爬坡階段
- 8.5.3 島模型遺傳演算法階段
- 8.5.4 需要老化
- 8.5.5 編碼方案
- 8.5.6 適應度函數
- 8.5.7 galSim
- 8.6 實驗
- 8.6.1 結果
- 8.7 結論
- 致謝
- 參考文獻
**第三部分 - 創意進化設計**
**第9章 - 創意設計與生成進化範式**
作者:John Frazer
- 9.1 介紹
- 9.2 來自自然的適應模型
- 9.3 生成進化範式
- 9.4 範式的問題
- 9.5 概念播種方法
- 9.6 爬蟲類示範
- 9.7 通用狀態空間建模器
- 9.8 邏輯場
- 9.9 回到與自然的類比
- 9.10 結論
- 參考文獻
**第10章 - 基因編程:生物啟發的計算,展現創造力以產生人類競爭結果**
作者:John R. Koza, Forrest H. Bennett III, David Andre, 和 Martin A. Keane
- 10.1 介紹
- 10.2 創造性與創造力
- 10.3 基因編程
- 10.4 將基因編程應用於電路合成
- 10.4.1 Campbell 1917 梯形濾波器專利
- 10.4.2 Zobel 1925 'M-Derived Half Section' 專利
- 10.4.3 Cauer 1934–1936 橢圓濾波器專利
- 10.4.4 放大器、計算、溫度感測、電壓參考及其他電路
- 10.5 電路的拓撲、尺寸、佈局與路由
- 10.6 通過基因編程自動合成控制器
- 10.6.1 針對雙滯後系統的穩健控制器
- 10.7 創造力與進化的非邏輯性
- 10.8 結論
- 參考文獻
**第11章 - 朝向共生共同進化的建築方法**
作者:Helen Jackson
- 11.1 介紹
- 11.2 Lindenmayer 系統
- 11.2.1 L-系統示例
- 11.2.2 等距網格
- 11.2.3 空間胚胎學
- 11.3 人工選擇
- 11.3.1 眼球測試
- 11.4 單目標進化
- 11.4.1 '通用功能' 作為適應度函數
- 11.4.2 向低 i 值進化
- 11.4.3 結構穩定性
- 11.4.4 建築作為多目標任務
- 11.4.5 雙目標進化
- 11.5 表現、系統與共生
- 11.5.1 共同進化
- 11.5.2 天真的建築形式表現
- 11.5.3 空間胚胎學
- 11.6 結論
- 致謝
- 參考文獻
**第12章 - 使用進化演算法輔助建築結構設計師**
作者:Peter von Buelow
- 12.1 介紹
- 12.2 分析工具與設計工具
- 12.3 進化系統在設計中的優勢
- 12.3.1 使用族群
- 12.3.2 重組與突變
- 12.3.3 廣泛搜索設計空間
- 12.3.4 無需了解目標函數
- 12.3.5 模仿人類設計過程
- 12.3.6 能夠從設計師那裡學習
- 12.4 IGDT 的特徵
- 12.4.1 IGDT 概念的定義
- 12.4.2 IGDT 與設計過程的關係
- 12.5 IGDT 的機制
- 12.6 IGDT 的運作
- 12.6.1 問題定義
- 12.6.2 初始 IGDT 生成
- 12.6.3 與設計師選擇/互動的初始生成
- 12.6.4 第二代 IGDT 回應
- 12.6.5 第二代設計師互動
- 12.6.6 第三代
- 12.7 結論
- 致謝
- 參考文獻
**第四部分 - 進化藝術**
**第13章 - 幾億年的基因進化算法圖像**
作者:Steven Rooke
- 13.1 介紹
- 13.2 使用基因編程進行藝術創作
- 13.2.1 基因變異
- 13.2.2 基因庫
- 13.2.3 函數與節點內部
- 13.2.4 一次典型運行
- 13.3 地平線線與幻想風景
- 13.4 基因分形