Creative Evolutionary Systems (Hardcover)
暫譯: 創意進化系統 (精裝版)

David W. Corne, Peter J. Bentley

  • 出版商: Morgan Kaufmann
  • 出版日期: 2001-07-30
  • 定價: $2,450
  • 售價: 8.0$1,960
  • 語言: 英文
  • 頁數: 576
  • 裝訂: Hardcover
  • ISBN: 1558606734
  • ISBN-13: 9781558606739
  • 相關分類: 人工智慧程式語言
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

The use of evolution for creative problem solving is one of the most exciting and potentially significant areas in computer science today. Evolutionary computation is a way of solving problems, or generating designs, using mechanisms derived from natural evolution. This book concentrates on applying important ideas in evolutionary computation to creative areas, such as art, music, architecture, and design. It shows how human interaction, new representations, and approaches such as open-ended evolution can extend the capabilities of evolutionary computation from optimization of existing solutions to innovation and the generation of entirely new and original solutions.


This book takes a fresh look at creativity, exploring what it is and how the actions of evolution can resemble it. Examples of novel evolved solutions are presented in a variety of creative disciplines. The editors have compiled contributions by leading researchers in each discipline.


If you are a savvy and curious computing professional, a computer-literate artist, musician or designer, or a specialist in evolutionary computation and its applications, you will find this a fascinating survey of the most interesting work being done in the area today

Contents


Foreword

An Introduction to Creative Evolutionary Systems

By Peter J. Bentley and David W. Corne

    Introduction

    AI and Creativity

    Evolutionary Computation

    Creative Evolutionary Systems

    Is Evolution Creative?



 

PART I - Evolutionary Creativity



 

Chapter 1 - Creativity in Evolution: Individuals, Interactions, and Environments

By Tim Taylor



    1.1 Introduction

    1.2 Creativity and Opened-Ended Evolution

    1.3 Design Issues
      1.3.1 Von Neumann’s Architecture for Self-Reproduction

      1.3.2 Tierra

      1.3.3 Implicit versus Explicit Encoding

      1.3.4 Ability to Perform Other Tasks

      1.3.5 Embeddedness in the Arena of Competition and Richness of Interactions

      1.3.6 Materiality

    1.4 A Full Specification For An Open-Ended Evolutionary Process
      1.4.1 Waddington’s Paradigm for an Evolutionary Process

    1.5 Conclusions

    Acknowledgments

    References



 

Chapter 2 - Recognizability of the Idea: The Evolutionary Process of Argenia

By Celestino Soddu



    2.1 Introduction

    2.2 Recognizability, Identity, And Complexity

    2.3 Evolutionary Codes: Artificial DNA

    2.4 Natural/Artificial Complexity

    2.5 Giotto, A Medieval Idea In Evolution

    2.6 Rome, Future Scenarios

    2.7 Basilica, Generative Software To Design Complexity

    2.8 Madrid and Milan, Generated Architecture

    2.9 Argenìa, The Natural Industrial Object, And The Artificial Uniqueness Of Species

    2.10 Argenìc Art: Picasso

    2.11 Conclusions

    References



 

Chapter 3 - Breeding Aesthetic Objects: Art and Artificial Evolution

By Mitchell Whitelaw



    3.1 Introduction

    3.2 Breeding Aesthetic Objects
      3.2.1 A Case Study—Steven Rooke

    3.3 Breeding and Creation
      3.3.1 Creative Agency and the Breeding Process

      3.3.2 The Evolved Aesthetic Object

    3.4 Limits

    3.5 Driessens and Verstappen—An Alternative Approach

    3.6 Conclusions

    References



 

Chapter 4 - The Beer Can Theory of Creativity

By Liane Gabora



    4.1 Introduction

    4.2 Culture As An Evolutionary Process
      4.2.1 Variation and Convergence in Biology and Culture

      4.2.2 Is More Than One Mind Necessary for Ideas to Evolve?

      4.2.3 Meme and Variations: A Computer Model of Cultural Evolution

      4.2.4 Breadth-First versus Depth-First Exploration

      4.2.5 Dampening Arbitrary Associations and Forging Meaningful Ones

    4.3 Creativity as The Origin Of Culture
      4.3.1 Theoretical Evidence

      4.3.2 Archeological Evidence

      4.3.3 Evidence from Animal Behavior

    4.4 What Caused the Onset of Creativity?

    4.5 Conclusions

    Acknowledgments

    References



 

PART II Evolutionary Music



 

Chapter 5 - GenJam: Evolution of a Jazz Improviser

By John A. Biles



    5.1 Introduction

    5.2 Overview and Architecture

    5.3 Representations

    5.4 Genetic Operators and Training
      5.4.1 Crossover

      5.4.2 Musically Meaningful Mutation

    5.5 Real-Time Interaction

    5.6 Conclusions

    References



 

Chapter 6 - On the Origins and Evolution of Music in Virtual Worlds

By Eduardo Reck Miranda



    6.1 Introduction

    6.2 Evolutionary Modeling
      6.2.1 Transformation and Selection

      6.2.2 Coevolution

      6.2.3 Self-organization

      6.2.4 Level Formation

    6.3 Evolving Sound With Cellular Automata
      6.3.1 The Basics of Cellular Automata

      6.3.2 The Cellular Automaton Used in Our System

      6.3.3 The Synthesis Engine

    6.4 Commentary On The Results

    6.5 Conclusions

    Acknowledgments

    References



 

Chapter 7 - Vox Populi: Evolutionary Computation for Music Evolution

By Artemis Moroni, Jônatas Manzolli, Fernando Von Zuben, and Ricardo Gudwin



    7.1 Introduction

    7.2 Sound Attributes

    7.3 Evolutionary Musical Cycle
      7.3.1 The Voices Population

      7.3.2 The Rhythm of the Evolution

    7.4 Fitness Evaluation
      7.4.1 The Consonance Criterion

      7.4.2 Melodic Fitness

      7.4.3 Harmonic Fitness

      7.4.4 Voice Range Criterion

      7.4.5 Musical Fitness

    7.5 Interface And Parameter Control

    7.6 Experiments

    7.7 Conclusions

    Acknowledgments

    References



 

Chapter 8 - The Sound Gallery—An Interactive A-Life Artwork

By Sam Woolf and Adrian Thompson


    8.1 Introduction

    8.2 Evolvable Hardware
      8.2.1 Reconfigurable Chips

    8.3 Gallery Setup
      8.3.1 Setting

      8.3.2 Sensing Systems

    8.4 Contextualization: Artificial Life and Art
      8.4.1 Evolutionary Algorithms and Visual Arts

      8.4.2 Evolutionary Algorithms and Music

      8.4.3 Interactive Genetic Art

      8.4.4 Interactive, Adaptive, and Autonomous (Nongenetic) Artworks

    8.5 The Sound Gallery Algorithms
      8.5.1 Two-Phase Hill-Climbing/ Island Model GA

      8.5.2 Hill-climbing Phase

      8.5.3 Island Model Genetic Algorithm Phase

      8.5.4 The Need for Aging

      8.5.5 Encoding Scheme

      8.5.6 The Fitness Function

      8.5.7 galSim

    8.6 The Experiment
      8.6.1 Results

    8.7 Conclusions

    Acknowledgments

    References

    Contents



 

PART III Creative Evolutionary Design



 

Chapter 9 - Creative Design and the Generative Evolutionary Paradigm

By John Frazer


    9.1 Introduction

    9.2 The Adaptive Model From Nature

    9.3 The Generative Evolutionary Paradigm

    9.4 Problems With The Paradigm

    9.5 Concept Seeding Approach

    9.6 The Reptile Demonstration

    9.7 Universal State Space Modeler

    9.8 Logic Fields

    9.9 Returning to the Analogy with Nature

    9.10 Conclusions

    References


 

Chapter 10 - Genetic Programming: Biologically Inspired
Computation That Exhibits Creativity in Producing
Human-Competitive Results

By John R. Koza, Forrest H. Bennett III, David Andre, and
Martin A. Keane


    10.1 Introduction

    10.2 Inventiveness And Creativity

    10.3 Genetic Programming

    10.4 Applying Genetic Programming To Circuit Synthesis
      10.4.1 Campbell 1917 Ladder Filter Patent

      10.4.2 Zobel 1925 "M-Derived Half Section" Patent

      10.4.3 Cauer 1934–1936 Elliptic Filter Patents

      10.4.4 Amplifier, Computational, Temperature-Sensing, Voltage Reference, and
      Other Circuits

    10.5 Topology, Sizing, Placement, and Routing Of Circuits Contents

    10.6 Automatic Synthesis Of Controllers By Means Of Genetic Programming
      10.6.1 Robust Controller for a Two-Lag Plant

    10.7 The Illogical Nature Of Creativity And Evolution

    10.8 Conclusions

    References


 

Chapeter 11 - Toward a Symbiotic Coevolutionary Approach to Architecture

By Helen Jackson


    11.1 Introduction

    11.2 Lindenmayer Systems
      11.2.1 Example L-Systems

      11.2.2 The Isospatial Grid

      11.2.3 Spatial Embryology

    11.3 Artificial Selection
      11.3.1 The Eyeball Test

    11.4 Single-Goal Evolution
      11.4.1 "Generic Function" as Fitness Function

      11.4.2 Evolution toward Low i-Values

      11.4.3 Structural Stability

      11.4.4 Architecture As a Multigoal Task

      11.4.5 Dual-Goal Evolution

    11.5 Representation, Systems, And Symbiosis
      11.5.1 Coevolution

      11.5.2 Naïve Architectural Form Representation

      11.5.3 Spatial Embryology

    11.6 Conclusions

    Acknowledgments

    References


 

Chapter 12 - Using Evolutionary Algorithms to Aid Designers of Architectural Structures

By Peter von Buelow


    12.1 Introduction

    12.2 Analysis Tools Vs. Design Tools

    12.3 Advantages Of Evolutionary Systems In Design Contents
      12.3.1 Use of Populations

      12.3.2 Recombination and Mutation

      12.3.3 Wide Search of Design Space

      12.3.4 No Knowledge of the Objective Function

      12.3.5 Imitation of Human Design Process

      12.3.6 Can Learn from Designer

    12.4 Characteristics of an IGDT
      12.4.1 Definition of the IGDT Concept

      12.4.2 Relation of IGDT to Design Process

    12.5 Mechanics of an IGDT

    12.6 IGDT Operation
      12.6.1 Problem Definition

      12.6.2 Initial IGDT Generation

      12.6.3 Initial Generation with Designer Selection/Interaction

      12.6.4 Second-Generation IGDT Response

      12.6.5 Second-Generation Designer Interaction

      12.6.6 Third Generation

    12.7 Conclusions

    Acknowledgments

    References



 

PART IV Evolutionary Art


 

Chapter 13 - Eons of Genetically Evolved Algorithmic Images

By Steven Rooke


    13.1 Introduction

    13.2 Using GP for Art
      13.2.1 Genetic Variation

      13.2.2 Genetic Library

      13.2.3 Functions and Node Internals

      13.2.4 A Typical Run

    13.3 Horizon Lines And Fantasy Landscapes

    13.4 Genetic Fractals
      13.4.1 Second-Order Subtleties of Orbit Trajectories during Iteration in the Complex Plane

    13.5 The Genetic Cross Dissolve

    13.6 What Is It?
      13.6.1 Constraints of Color and Form

      13.6.2 A Joyride for the Visual Cortex?

      13.6.3 Approaching the Organic

    13.7 Conclusions

    References


 

Chapter 14 - Art, Robots, and Evolution as a Tool for Creativity

By Luigi Pagliarini and Henrik Hautop Lund


    14.1 Introduction

    14.2 The Social Context Of Electronics
      14.2.1 Where Electronics Acts

      14.2.2 How Technology Influences Art (the World)

      14.2.3 How Technology Gets Feedback (from Art and the World)

    14.3 What Artist?
      14.3.1 Two Different Concepts or Aspects of the Artist

      14.3.2 Art and Human Language: The "Immaterial" Artist

      14.3.3 Art and Human Technique: The "Material" Artist

    14.4 Electronic Art
      14.4.1 A New Electronic Space

      14.4.2 The "Material" Electronic Artist

      14.4.3 The "Immaterial" Artist and the Uses of Electronics

      14.4.4 Example—The Artificial Painter

    14.5 Alive Art
      14.5.1 Other Artistic Movements Based on Electronics

      14.5.2 Alive Art

      14.5.3 The Aliver

      14.5.4 The "Alive Art Effect"

      14.5.5 Example—LEGO Robot Artists

    14.6 Conclusions

    References


 

Chapter 15 - Stepping Stones in the Mist

By Paul Brown


    15.1 Introduction

    15.2 On My Approach as an Artist—A Disclaimer

    15.3 Major Influences

    15.4 Historical Work—1960s and 1970s

    15.5 Early Computer Work

    15.6 Recent Work

    15.7 Current And Future Directions

    15.8 Conclusions

    Acknowledgments

    References


 

Chapter 16 - Evolutionary Generation of Faces 409

By Peter J. B. Hancock and Charlie D. Frowd


    16.1 Introduction
      16.1.1 Eigenfaces

      16.1.2 Evolutionary Face Generator System

    16.2 Testing
      16.2.1 Apparatus

      16.2.2 Generation of Face Images

      16.2.3 Evolutionary Algorithm

      16.2.4 Participants

    16.3 Results

    16.4 Discussion

    16.5 Conclusions

    Acknowledgments

    References


 

Chapter 17 - The Escher Evolver: Evolution to the People

By A. E. Eiben, R. Nabuurs, and I. Booij


    17.1 Introduction

    17.2 The Mathematical System Behind Escher’s Tiling

    17.3 Evolutionary Algorithm Design
      17.3.1 Representation

      17.3.2 Ground Shape and Transformation System

      17.3.3 Genetic Operators: Mutation and Crossover

      17.3.4 Selection Mechanism

    17.4 Implementation and The Working of The System
      17.4.1 Stand-Alone Version

      17.4.2 First Networked Version

      17.4.3 Second Networked Version

    17.5 Conclusions

    Acknowledgments

    References



 

PART V Evolutionary Innovation


 

Chapter 18 - The Genetic Algorithm as a Discovery Engine: Strange
Circuits and New Principles

By Julian F. Miller, Tatiana Kalganova, Natalia Lipnitskaya, and Dominic Job


    18.1 Introduction

    18.2 The Space of All Representations

    18.3 Evolutionary Algorithms That Assemble Electronic Circuits From A
    Collection of Available Components
      18.3.1 Binary Circuit Symbols

      18.3.2 Multiple-Valued Circuits

    18.4 Results
      18.4.1 One-Bit Adder

      18.4.2 Two-Bit Adder

      18.4.3 Two-Bit Multiplier

      18.4.4 Three-Bit Multiplier

      18.4.5 Multiple-Valued One-Digit Adder with Carry

    18.5 Fingerprinting and Principle Extraction

    18.6 Conclusions

    References


 

Chapter 19 - Discovering Novel Fighter Combat Maneuvers:
Simulating Test Pilot Creativity

By R. E. Smith, B. A. Dike, B. Ravichandran, A. El-Fallah, and R. K. Mehra


    19.1 Introduction

    19.2 Fighter Aircraft Maneuvering

    19.3 Genetics-Based Machine Learning
      19.3.1 Learning Classifier Systems

      19.3.2 The LCS Used Here

    19.4 "One-Sided Learning" Results

    19.5 "Two-Sided Learning" Results

    19.6 Differences In Goals And Techniques

    19.6.1 Implications of This Goal

    19.7 Conclusions

    Acknowledgments

    References


 

Chapter 20 - Innovative Antenna Design Using Genetic Algorithms

By Derek S. Linden


    20.1 Introduction

    20.2 Antenna Basics

    20.3 Conventional Designs and Unconventional Applications: The Yagi-Uda Antenna

    20.4 Unconventional Designs and Conventional Applications: Crooked-Wire
    And Treelike Genetic Antennas
      20.4.1 The Crooked-Wire Genetic Antenna

      20.4.2 Treelike Genetic Antennas

    20.5 Conclusions

    References


 

Chapter 21 - Evolutionary Techniques in Physical Robotics

By Jordan B. Pollack, Hod Lipson, Sevan Ficici, Pablo Funes,
Greg Hornby, and Richard A. Watson


    21.1 Introduction

    21.2 Coevolution

    21.3 Research Thrusts

    21.4 Evolution In Simulation

    21.5 Buildable Simulation

    21.6 Evolution and Construction of Electromechanical Systems

    21.7 Embodied Evolution

    21.8 Conclusions

    Acknowledgments

    References



 

Chapter 22 - Patenting of Novel Molecules Designed via Evolutionary Search

By Shail Patel, Ian Stott, Manmohan Bhakoo, and Peter Elliott


    22.1 Introduction

    22.2 Design Cycle

    22.3 Hypothesis: Mechanism Of Action

    22.4 Experimental Measures And Modeling Techniques
      22.4.1 Molecular Modeling

      22.4.2 Neural Networks

    22.5 Evolution

    22.6 Patent Application
      22.6.1 Comparing Patent Spaces

    22.7 Conclusions

    References

    Index

商品描述(中文翻譯)

使用進化來解決創意問題是當今計算機科學中最令人興奮且潛在重要的領域之一。進化計算是一種利用源自自然進化的機制來解決問題或生成設計的方法。本書專注於將進化計算中的重要思想應用於創意領域,如藝術、音樂、建築和設計。它展示了人類互動、新的表現形式以及開放式進化等方法如何擴展進化計算的能力,從優化現有解決方案到創新和生成全新且原創的解決方案。

本書對創造力進行了全新的探討,探索其本質以及進化的行為如何與之相似。書中展示了各種創意學科中新穎的進化解決方案的例子。編輯們匯集了各學科領域內領先研究者的貢獻。

如果您是一位精明且好奇的計算專業人士,或是一位具備計算機知識的藝術家、音樂家或設計師,或者是進化計算及其應用的專家,您會發現這是對當前該領域最有趣工作的迷人調查。

**內容**

前言
創意進化系統簡介
作者:Peter J. Bentley 和 David W. Corne
- 介紹
- 人工智慧與創造力
- 進化計算
- 創意進化系統
- 進化是否具創造性?

**第一部分 - 進化創造力**

**第1章 - 進化中的創造力:個體、互動與環境**
作者:Tim Taylor
- 1.1 介紹
- 1.2 創造力與開放式進化
- 1.3 設計問題
- 1.3.1 自我複製的馮·諾依曼架構
- 1.3.2 Tierra
- 1.3.3 隱式與顯式編碼
- 1.3.4 執行其他任務的能力
- 1.3.5 競爭場域中的嵌入性與互動的豐富性
- 1.3.6 物質性
- 1.4 開放式進化過程的完整規範
- 1.4.1 Waddington 的進化過程範式
- 1.5 結論
- 致謝
- 參考文獻

**第2章 - 概念的可識別性:Argenia 的進化過程**
作者:Celestino Soddu
- 2.1 介紹
- 2.2 可識別性、身份與複雜性
- 2.3 進化代碼:人工 DNA
- 2.4 自然/人工複雜性
- 2.5 Giotto,進化中的中世紀思想
- 2.6 羅馬,未來情景
- 2.7 Basilica,設計複雜性的生成軟體
- 2.8 馬德里與米蘭,生成的建築
- 2.9 Argenia,自然工業物體與物種的人工獨特性
- 2.10 Argenic 藝術:畢卡索
- 2.11 結論
- 參考文獻

**第3章 - 繁殖美學物體:藝術與人工進化**
作者:Mitchell Whitelaw
- 3.1 介紹
- 3.2 繁殖美學物體
- 3.2.1 案例研究—Steven Rooke
- 3.3 繁殖與創造
- 3.3.1 創造性代理與繁殖過程
- 3.3.2 進化的美學物體
- 3.4 限制
- 3.5 Driessens 和 Verstappen—替代方法
- 3.6 結論
- 參考文獻

**第4章 - 啤酒罐創造力理論**
作者:Liane Gabora
- 4.1 介紹
- 4.2 文化作為進化過程
- 4.2.1 生物學與文化中的變異與收斂
- 4.2.2 進化是否需要多個心智?
- 4.2.3 Meme 與變異:文化進化的計算模型
- 4.2.4 廣度優先與深度優先探索
- 4.2.5 減少任意聯想並形成有意義的聯想
- 4.3 創造力作為文化的起源
- 4.3.1 理論證據
- 4.3.2 考古證據
- 4.3.3 動物行為的證據
- 4.4 什麼導致創造力的出現?
- 4.5 結論
- 致謝
- 參考文獻

**第二部分 - 進化音樂**

**第5章 - GenJam:爵士即興演奏者的進化**
作者:John A. Biles
- 5.1 介紹
- 5.2 概述與架構
- 5.3 表現形式
- 5.4 基因運算子與訓練
- 5.4.1 交叉
- 5.4.2 音樂意義的突變
- 5.5 實時互動
- 5.6 結論
- 參考文獻

**第6章 - 虛擬世界中音樂的起源與進化**
作者:Eduardo Reck Miranda
- 6.1 介紹
- 6.2 進化建模
- 6.2.1 轉換與選擇
- 6.2.2 共同進化
- 6.2.3 自我組織
- 6.2.4 層級形成
- 6.3 使用細胞自動機進化聲音
- 6.3.1 細胞自動機的基本原理
- 6.3.2 我們系統中使用的細胞自動機
- 6.3.3 合成引擎
- 6.4 對結果的評論
- 6.5 結論
- 致謝
- 參考文獻

**第7章 - Vox Populi:音樂進化的進化計算**
作者:Artemis Moroni, Jônatas Manzolli, Fernando Von Zuben, 和 Ricardo Gudwin
- 7.1 介紹
- 7.2 聲音屬性
- 7.3 進化音樂循環
- 7.3.1 聲音族群
- 7.3.2 進化的節奏
- 7.4 適應度評估
- 7.4.1 和聲標準
- 7.4.2 旋律適應度
- 7.4.3 和聲適應度
- 7.4.4 聲音範圍標準
- 7.4.5 音樂適應度
- 7.5 介面與參數控制
- 7.6 實驗
- 7.7 結論
- 致謝
- 參考文獻

**第8章 - 聲音畫廊—互動式生命藝術作品**
作者:Sam Woolf 和 Adrian Thompson
- 8.1 介紹
- 8.2 可進化硬體
- 8.2.1 可重組晶片
- 8.3 畫廊設置
- 8.3.1 設定
- 8.3.2 感測系統
- 8.4 上下文化:人工生命與藝術
- 8.4.1 進化演算法與視覺藝術
- 8.4.2 進化演算法與音樂
- 8.4.3 互動式基因藝術
- 8.4.4 互動式、自適應及自主(非基因)藝術作品
- 8.5 聲音畫廊演算法
- 8.5.1 兩階段爬坡/島模型遺傳演算法
- 8.5.2 爬坡階段
- 8.5.3 島模型遺傳演算法階段
- 8.5.4 需要老化
- 8.5.5 編碼方案
- 8.5.6 適應度函數
- 8.5.7 galSim
- 8.6 實驗
- 8.6.1 結果
- 8.7 結論
- 致謝
- 參考文獻

**第三部分 - 創意進化設計**

**第9章 - 創意設計與生成進化範式**
作者:John Frazer
- 9.1 介紹
- 9.2 來自自然的適應模型
- 9.3 生成進化範式
- 9.4 範式的問題
- 9.5 概念播種方法
- 9.6 爬蟲類示範
- 9.7 通用狀態空間建模器
- 9.8 邏輯場
- 9.9 回到與自然的類比
- 9.10 結論
- 參考文獻

**第10章 - 基因編程:生物啟發的計算,展現創造力以產生人類競爭結果**
作者:John R. Koza, Forrest H. Bennett III, David Andre, 和 Martin A. Keane
- 10.1 介紹
- 10.2 創造性與創造力
- 10.3 基因編程
- 10.4 將基因編程應用於電路合成
- 10.4.1 Campbell 1917 梯形濾波器專利
- 10.4.2 Zobel 1925 'M-Derived Half Section' 專利
- 10.4.3 Cauer 1934–1936 橢圓濾波器專利
- 10.4.4 放大器、計算、溫度感測、電壓參考及其他電路
- 10.5 電路的拓撲、尺寸、佈局與路由
- 10.6 通過基因編程自動合成控制器
- 10.6.1 針對雙滯後系統的穩健控制器
- 10.7 創造力與進化的非邏輯性
- 10.8 結論
- 參考文獻

**第11章 - 朝向共生共同進化的建築方法**
作者:Helen Jackson
- 11.1 介紹
- 11.2 Lindenmayer 系統
- 11.2.1 L-系統示例
- 11.2.2 等距網格
- 11.2.3 空間胚胎學
- 11.3 人工選擇
- 11.3.1 眼球測試
- 11.4 單目標進化
- 11.4.1 '通用功能' 作為適應度函數
- 11.4.2 向低 i 值進化
- 11.4.3 結構穩定性
- 11.4.4 建築作為多目標任務
- 11.4.5 雙目標進化
- 11.5 表現、系統與共生
- 11.5.1 共同進化
- 11.5.2 天真的建築形式表現
- 11.5.3 空間胚胎學
- 11.6 結論
- 致謝
- 參考文獻

**第12章 - 使用進化演算法輔助建築結構設計師**
作者:Peter von Buelow
- 12.1 介紹
- 12.2 分析工具與設計工具
- 12.3 進化系統在設計中的優勢
- 12.3.1 使用族群
- 12.3.2 重組與突變
- 12.3.3 廣泛搜索設計空間
- 12.3.4 無需了解目標函數
- 12.3.5 模仿人類設計過程
- 12.3.6 能夠從設計師那裡學習
- 12.4 IGDT 的特徵
- 12.4.1 IGDT 概念的定義
- 12.4.2 IGDT 與設計過程的關係
- 12.5 IGDT 的機制
- 12.6 IGDT 的運作
- 12.6.1 問題定義
- 12.6.2 初始 IGDT 生成
- 12.6.3 與設計師選擇/互動的初始生成
- 12.6.4 第二代 IGDT 回應
- 12.6.5 第二代設計師互動
- 12.6.6 第三代
- 12.7 結論
- 致謝
- 參考文獻

**第四部分 - 進化藝術**

**第13章 - 幾億年的基因進化算法圖像**
作者:Steven Rooke
- 13.1 介紹
- 13.2 使用基因編程進行藝術創作
- 13.2.1 基因變異
- 13.2.2 基因庫
- 13.2.3 函數與節點內部
- 13.2.4 一次典型運行
- 13.3 地平線線與幻想風景
- 13.4 基因分形