Foundations of Machine Learning, 2/e (Hardcover)
暫譯: 機器學習基礎(第二版,精裝本)

Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar

買這商品的人也買了...

相關主題

商品描述

A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms.

This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics.

Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review.

This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.

商品描述(中文翻譯)

一本針對研究生級別的機器學習教科書的新版本,專注於算法的分析和理論。

這本書是機器學習的一般介紹,既可以作為研究生的教科書,也可以作為研究人員的參考資料。它涵蓋了機器學習中的基本現代主題,同時提供了討論和證明算法所需的理論基礎和概念工具。書中還描述了這些算法應用的幾個關鍵方面。作者旨在呈現新穎的理論工具和概念,即使對於相對進階的主題,也提供簡潔的證明。

機器學習基礎在其專注於算法的分析和理論方面是獨特的。前四章為後續內容奠定了理論基礎;隨後的章節大多是自成一體的。涵蓋的主題包括可能近似正確(PAC)學習框架;基於Rademacher複雜度和VC維度的泛化界限;支持向量機(SVMs);核方法;提升;在線學習;多類別分類;排序;回歸;算法穩定性;降維;學習自動機和語言;以及強化學習。每章結尾都有一組練習題。附錄提供了額外的材料,包括簡明的概率回顧。

這第二版新增了三個章節,分別是模型選擇、最大熵模型和條件熵模型。附錄中的新材料包括一個關於Fenchel對偶的重要部分,擴展了集中不等式的涵蓋範圍,並新增了一個關於信息理論的條目。本版中超過一半的練習題為新題。