Statistical Approaches to Gene x Environment Interactions for Complex Phenotypes (MIT Press)
暫譯: 基因與環境互動的統計方法:針對複雜表型的研究 (MIT Press)
Michael Windle (Editor)
- 出版商: MIT
- 出版日期: 2016-07-08
- 售價: $1,750
- 貴賓價: 9.8 折 $1,715
- 語言: 英文
- 頁數: 304
- 裝訂: Hardcover
- ISBN: 0262034689
- ISBN-13: 9780262034685
-
相關分類:
生物資訊 Bioinformatics
立即出貨 (庫存=1)
買這商品的人也買了...
-
$880$695 -
$1,880$1,786 -
$500$390 -
$1,670$1,587 -
$1,570$1,492
商品描述
Findings from the Human Genome Project and from Genome-Wide Association (GWA) studies indicate that many diseases and traits manifest a more complex genomic pattern than previously assumed. These findings, and advances in high-throughput sequencing, suggest that there are many sources of influence -- genetic, epigenetic, and environmental. This volume investigates the role of the interactions of genes and environment (G × E) in diseases and traits (referred to by the contributors as complex phenotypes) including depression, diabetes, obesity, and substance use.
The contributors first present different statistical approaches or strategies to address G × E and G × G interactions with high-throughput sequenced data, including two-stage procedures to identify G × E and G × G interactions, marker-set approaches to assessing interactions at the gene level, and the use of a partial-least square (PLS) approach. The contributors then turn to specific complex phenotypes, research designs, or combined methods that may advance the study of G × E interactions, considering such topics as randomized clinical trials in obesity research, longitudinal research designs and statistical models, and the development of polygenic scores to investigate G × E interactions.
ContributorsFatima Umber Ahmed, Yin-Hsiu Chen, James Y. Dai, Caroline Y. Doyle, Zihuai He, Li Hsu, Shuo Jiao, Erin Loraine Kinnally, Yi-An Ko, Charles Kooperberg, Seunggeun Lee, Arnab Maity, Jeanne M. McCaffery, Bhramar Mukherjee, Sung Kyun Park, Duncan C. Thomas, Alexandre Todorov, Jung-Ying Tzeng, Tao Wang, Michael Windle, Min Zhang
商品描述(中文翻譯)
人類基因組計畫和全基因組關聯(GWA)研究的發現表明,許多疾病和特徵表現出比先前假設的更複雜的基因組模式。這些發現以及高通量測序的進展,暗示著有許多影響來源——遺傳、表觀遺傳和環境。本書探討基因與環境的互動(G × E)在疾病和特徵(貢獻者稱之為複雜表型)中的角色,包括抑鬱症、糖尿病、肥胖和物質使用。
貢獻者首先介紹不同的統計方法或策略,以應對高通量測序數據中的 G × E 和 G × G 互動,包括識別 G × E 和 G × G 互動的兩階段程序、評估基因層面互動的標記集方法,以及使用部分最小平方(PLS)方法。然後,貢獻者轉向特定的複雜表型、研究設計或可能推進 G × E 互動研究的綜合方法,考慮的主題包括肥胖研究中的隨機臨床試驗、縱向研究設計和統計模型,以及發展多基因分數以研究 G × E 互動。
貢獻者:Fatima Umber Ahmed、陳尹秀、James Y. Dai、Caroline Y. Doyle、何子懷、許立、焦碩、Erin Loraine Kinnally、柯奕安、Charles Kooperberg、李承根、Arnab Maity、Jeanne M. McCaffery、Bhramar Mukherjee、朴成均、Duncan C. Thomas、Alexandre Todorov、曾榮英、王韜、Michael Windle、Min Zhang