買這商品的人也買了...
-
$880$695 -
$800$632 -
$680$537 -
$690$587 -
$1,590$1,511 -
$580$458 -
$880$695 -
$880$695 -
$780$616 -
$480$379 -
$420$357 -
$160$152 -
$650$514 -
$480$379 -
$680$537 -
$680$537 -
$780$616 -
$450$356 -
$450$356 -
$350$277 -
$490$387 -
$950$903 -
$520$411 -
$1,680$1,596 -
$300$198
商品描述
This book offers an introduction to current methods in computational modeling in neuroscience. The book describes realistic modeling methods at levels of complexity ranging from molecular interactions to large neural networks. A "how to" book rather than an analytical account, it focuses on the presentation of methodological approaches, including the selection of the appropriate method and its potential pitfalls. It is intended for experimental neuroscientists and graduate students who have little formal training in mathematical methods, but it will also be useful for scientists with theoretical backgrounds who want to start using data-driven modeling methods. The mathematics needed are kept to an introductory level; the first chapter explains the mathematical methods the reader needs to master to understand the rest of the book.
The chapters are written by scientists who have successfully integrated data-driven modeling with experimental work, so all of the material is accessible to experimentalists. The chapters offer comprehensive coverage with little overlap and extensive cross-references, moving from basic building blocks to more complex applications.
Contributors: Pablo Achard, Haroon Anwar, Upinder S. Bhalla, Michiel Berends, Nicolas Brunel, Ronald L. Calabrese, Brenda Claiborne, Hugo Cornelis, Erik De Schutter, Alain Destexhe, Bard Ermentrout, Kristen Harris, Sean Hill, John R. Huguenard, William R. Holmes, Gwen Jacobs, Gwendal LeMasson, Henry Markram, Reinoud Maex, Astrid A. Prinz, Imad Riachi, John Rinzel, Arnd Roth, Felix Schürmann, Werner Van Geit, Mark C. W. van Rossum, Stefan Wils
Computational Neuroscience series
The chapters are written by scientists who have successfully integrated data-driven modeling with experimental work, so all of the material is accessible to experimentalists. The chapters offer comprehensive coverage with little overlap and extensive cross-references, moving from basic building blocks to more complex applications.
Contributors: Pablo Achard, Haroon Anwar, Upinder S. Bhalla, Michiel Berends, Nicolas Brunel, Ronald L. Calabrese, Brenda Claiborne, Hugo Cornelis, Erik De Schutter, Alain Destexhe, Bard Ermentrout, Kristen Harris, Sean Hill, John R. Huguenard, William R. Holmes, Gwen Jacobs, Gwendal LeMasson, Henry Markram, Reinoud Maex, Astrid A. Prinz, Imad Riachi, John Rinzel, Arnd Roth, Felix Schürmann, Werner Van Geit, Mark C. W. van Rossum, Stefan Wils
Computational Neuroscience series
商品描述(中文翻譯)
本書介紹了當前在神經科學中計算建模的方法。書中描述了從分子互動到大型神經網絡的各種複雜程度的現實建模方法。這是一本「如何做」的書,而非分析性報告,重點在於方法論的呈現,包括選擇適當方法及其潛在的陷阱。它旨在幫助那些在數學方法上接受過少量正式訓練的實驗神經科學家和研究生,但對於希望開始使用數據驅動建模方法的理論背景科學家也會有幫助。所需的數學知識保持在入門水平;第一章解釋了讀者需要掌握的數學方法,以理解本書的其餘部分。
各章節由成功將數據驅動建模與實驗工作相結合的科學家撰寫,因此所有材料對實驗工作者都是可接觸的。各章提供了全面的覆蓋,重疊較少且有廣泛的交叉引用,從基本構建塊到更複雜的應用。
貢獻者:Pablo Achard, Haroon Anwar, Upinder S. Bhalla, Michiel Berends, Nicolas Brunel, Ronald L. Calabrese, Brenda Claiborne, Hugo Cornelis, Erik De Schutter, Alain Destexhe, Bard Ermentrout, Kristen Harris, Sean Hill, John R. Huguenard, William R. Holmes, Gwen Jacobs, Gwendal LeMasson, Henry Markram, Reinoud Maex, Astrid A. Prinz, Imad Riachi, John Rinzel, Arnd Roth, Felix Schürmann, Werner Van Geit, Mark C. W. van Rossum, Stefan Wils
計算神經科學系列