Stochastic Methods in Neuroscience (Hardcover)
暫譯: 神經科學中的隨機方法 (精裝版)

Carlo Laing , Gabriel J. Lord

  • 出版商: Oxford University
  • 出版日期: 2009-11-30
  • 售價: $1,450
  • 貴賓價: 9.8$1,421
  • 語言: 英文
  • 頁數: 416
  • 裝訂: Hardcover
  • ISBN: 0199235074
  • ISBN-13: 9780199235070
  • 下單後立即進貨 (約5~7天)

商品描述

<內容簡介>

Topical and timely work in a growing field
Brings together research from disparate sources
Introductory material through to cutting edge research
Extensive, up to date bibliography

Great interest is now being shown in computational and mathematical neuroscience, fuelled in part by the rise in computing power, the ability to record large amounts of neurophysiological data, and advances in stochastic analysis. These techniques are leading to biophysically more realistic models. It has also become clear that both neuroscientists and mathematicians profit from collaborations in this exciting research area.

Graduates and researchers in computational neuroscience and stochastic systems, and neuroscientists seeking to learn more about recent advances in the modelling and analysis of noisy neural systems, will benefit from this comprehensive overview. The series of self-contained chapters, each written by experts in their field, covers key topics such as: Markov chain models for ion channel release; stochastically forced single neurons and populations of neurons; statistical methods for parameter estimation; and the numerical approximation of these stochastic models.

Each chapter gives an overview of a particular topic, including its history, important results in the area, and future challenges, and the text comes complete with a jargon-busting index of acronyms to allow readers to familiarize themselves with the language used.

.<章節目錄>

PrefaceCarlo Laing and Gabriel J Lord:

Nomenclature

1: Benjamin Lindner: A brief introduction to some basic stochastic processes

2: Jeffrey R Groff, Hilary DeRemigio, and Gregory D Smith: Markov chain models of ion channels and calcium release sites

3: Nils Berglund and Barbara Gentz: Stochastic dynamic bifurcations and excitability

4: Andre Longtin: Neural coherence and stochastic resonance

5: Bard Ermentrout: Noisy oscillators

6: Brent Doiron: The role of variablity in populations of spiking neuons

7: Daniel Tranchina: Population density methods in large-scale neural network modelling

8: Marco A Huertas and Gregory D Smith: A population density model of the driven LGN/PGN

9: Alin Destexhe and Michelle Rudolph-Lilith: Syanptic "noise": experiments, computatioal consequences and methods to analyze experimental data

10: Liam Paninski, Emery N Brown, Satish Iyengar, and Robert E Kass: Statistical models of spike trains

11: A Aldo Faisal: Stochastic simulations of neurons, axons, and action potentials

12: Hasan Alzubaidi, Hagen Gilsing, Tony Shardlow: Numerical simulations of SDEs and SPDEs from neural systems using SDELAB

商品描述(中文翻譯)

內容簡介
這是一部在不斷增長的領域中具有時效性和主題性的作品。
匯集了來自不同來源的研究。
從入門材料到前沿研究。
廣泛且最新的參考書目。

目前對計算和數學神經科學的興趣日益增加,部分原因是計算能力的提升、記錄大量神經生理數據的能力以及隨機分析的進展。這些技術正在導致生物物理上更為真實的模型。顯然,神經科學家和數學家在這個令人興奮的研究領域中都能從合作中獲益。

計算神經科學和隨機系統的畢業生和研究人員,以及希望了解有關噪聲神經系統建模和分析的最新進展的神經科學家,將從這本全面的概述中受益。每一章都是由該領域的專家撰寫的自成一體的章節,涵蓋了關鍵主題,例如:離子通道釋放的馬可夫鏈模型;隨機驅動的單神經元和神經元群體;參數估計的統計方法;以及這些隨機模型的數值近似。

每一章都對特定主題進行概述,包括其歷史、該領域的重要結果和未來挑戰,文本還附有一個術語索引,幫助讀者熟悉所使用的語言。

章節目錄
前言
Carlo Laing 和 Gabriel J Lord:

命名法

1: Benjamin Lindner: 一些基本隨機過程的簡要介紹

2: Jeffrey R Groff, Hilary DeRemigio, 和 Gregory D Smith: 離子通道和鈣釋放位點的馬可夫鏈模型

3: Nils Berglund 和 Barbara Gentz: 隨機動態分岔和興奮性

4: Andre Longtin: 神經一致性和隨機共振

5: Bard Ermentrout: 噪聲振盪器

6: Brent Doiron: 變異性在脈衝神經元群體中的角色

7: Daniel Tranchina: 大規模神經網絡建模中的群體密度方法

8: Marco A Huertas 和 Gregory D Smith: 驅動的 LGN/PGN 的群體密度模型

9: Alin Destexhe 和 Michelle Rudolph-Lilith: 突觸“噪聲”:實驗、計算後果和分析實驗數據的方法

10: Liam Paninski, Emery N Brown, Satish Iyengar, 和 Robert E Kass: 脈衝列的統計模型

11: A Aldo Faisal: 神經元、軸突和動作電位的隨機模擬

12: Hasan Alzubaidi, Hagen Gilsing, Tony Shardlow: 使用 SDELAB 進行神經系統的隨機微分方程和隨機偏微分方程的數值模擬