The Finite Element Method: An Introduction with Partial Differential Equations, 2/e (Paperback)
暫譯: 有限元素法:偏微分方程入門(第二版)
A. J. Davies
- 出版商: Oxford University
- 出版日期: 2011-11-10
- 售價: $980
- 貴賓價: 9.8 折 $960
- 語言: 英文
- 頁數: 308
- 裝訂: Paperback
- ISBN: 0199609136
- ISBN-13: 9780199609130
下單後立即進貨 (約5~7天)
相關主題
商品描述
* Aimed at un undergraduate audience.
* Clear explanation of the ideas with a straightforward development of the techniques and concepts.
* Worked examples.
* Exercises with detailed solutions for all chapters.
* Useful introduction for postgraduates.
New to this edition
* This book is a major revision of the first edition and all chapters have been updated
* A new chapter on the boundary element method
* A new chapter on computational methods
* New exercises
* An introduction to the use of the numerical Laplace transform for diffusion problems
The finite element method is a technique for solving problems in applied science and engineering. The essence of this book is the application of the finite element method to the solution of boundary and initial-value problems posed in terms of partial differential equations. The method is developed for the solution of Poisson's equation, in a weighted-residual context, and then proceeds to time-dependent and nonlinear problems. The relationship with the variational approach is also explained.
This book is written at an introductory level, developing all the necessary concepts where required. Consequently, it is well-placed to be used as a textbook for a course in finite elements for final year undergraduates, the usual place for studying finite elements. There are worked examples throughout and each chapter has a set of exercises with detailed solutions.
Table Of Contents
1: Historical introduction
2: Weighted residual and variational methods
3: The finite element method for elliptical problems
4: Higher-order elements: the isoparametric concept
5: Further topics in the finite element method
6: Convergence of the finite element method
7: The boundary element method
8: Computational aspects
9: References
Appendices
A: Partial differential equation models in the physical sciences
B: Some integral theorems of the vector calculus
C: A formula for integrating products of area coordinates over a triangle
D: Numerical integration formulae
E: Stehfest's formula and weights for numerical Laplace transform inversion
商品描述(中文翻譯)
* 針對大學本科生的讀者群。
* 對概念的清晰解釋,並簡單明瞭地發展技術和概念。
* 實作範例。
* 每章都有詳細解答的練習題。
* 對研究生有用的介紹。
本版新內容
* 本書是第一版的重大修訂,所有章節均已更新。
* 新增邊界元素法的章節。
* 新增計算方法的章節。
* 新增練習題。
* 介紹數值拉普拉斯變換在擴散問題中的應用。
有限元素法是一種解決應用科學和工程問題的技術。本書的核心在於將有限元素法應用於以偏微分方程表述的邊界和初值問題的解決。該方法在加權殘差的背景下發展,用於解決泊松方程,然後進一步處理時間相關和非線性問題。書中也解釋了與變分方法的關係。
本書以入門級別撰寫,必要時發展所有所需的概念。因此,它非常適合用作最後一年本科生有限元素課程的教科書,這通常是學習有限元素的地方。全書有實作範例,每章都有一組詳細解答的練習題。
目錄
1: 歷史介紹
2: 加權殘差和變分方法
3: 橢圓問題的有限元素法
4: 高階元素:等參數概念
5: 有限元素法的進一步主題
6: 有限元素法的收斂性
7: 邊界元素法
8: 計算方面
9: 參考文獻
附錄
A: 物理科學中的偏微分方程模型
B: 向量微積分的一些積分定理
C: 在三角形上對面積坐標乘積進行積分的公式
D: 數值積分公式
E: Stehfest公式及數值拉普拉斯變換反演的權重