Generative Adversarial Networks for Image-To-Image Translation
暫譯: 生成對抗網絡在圖像到圖像轉換中的應用
Solanki, Arun, Nayyar, Anand, Naved, Mohd
- 出版商: Academic Press
- 出版日期: 2021-06-23
- 售價: $6,120
- 貴賓價: 9.5 折 $5,814
- 語言: 英文
- 頁數: 444
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0128235195
- ISBN-13: 9780128235195
海外代購書籍(需單獨結帳)
相關主題
商品描述
Generative Adversarial Networks (GAN) have started a revolution in Deep Learning, and today GAN is one of the most researched topics in Artificial Intelligence. Generative Adversarial Networks for Image-to-Image Translation provides a comprehensive overview of the GAN (Generative Adversarial Network) concept starting from the original GAN network to various GAN-based systems such as Deep Convolutional GANs (DCGANs), Conditional GANs (cGANs), StackGAN, Wasserstein GANs (WGAN), cyclical GANs, and many more. The book also provides readers with detailed real-world applications and common projects built using the GAN system with respective Python code. A typical GAN system consists of two neural networks, i.e., generator and discriminator. Both of these networks contest with each other, similar to game theory. The generator is responsible for generating quality images that should resemble ground truth, and the discriminator is accountable for identifying whether the generated image is a real image or a fake image generated by the generator. Being one of the unsupervised learning-based architectures, GAN is a preferred method in cases where labeled data is not available. GAN can generate high-quality images, images of human faces developed from several sketches, convert images from one domain to another, enhance images, combine an image with the style of another image, change the appearance of a human face image to show the effects in the progression of aging, generate images from text, and many more applications. GAN is helpful in generating output very close to the output generated by humans in a fraction of second, and it can efficiently produce high-quality music, speech, and images.
商品描述(中文翻譯)
生成對抗網路(Generative Adversarial Networks, GAN)在深度學習領域引發了一場革命,今天GAN已成為人工智慧中最受研究的主題之一。《生成對抗網路於影像轉換》提供了GAN(生成對抗網路)概念的全面概述,從原始的GAN網路開始,涵蓋了各種基於GAN的系統,如深度卷積GAN(Deep Convolutional GANs, DCGANs)、條件GAN(Conditional GANs, cGANs)、StackGAN、Wasserstein GAN(WGAN)、循環GAN等多種形式。本書還為讀者提供了詳細的實際應用案例和使用GAN系統構建的常見專案,並附有相應的Python程式碼。典型的GAN系統由兩個神經網路組成,即生成器(generator)和判別器(discriminator)。這兩個網路彼此競爭,類似於博弈論。生成器負責生成應該與真實情況相似的高品質影像,而判別器則負責識別生成的影像是真實影像還是由生成器生成的假影像。作為一種基於無監督學習的架構,GAN在標記數據不可用的情況下是一種首選方法。GAN能夠生成高品質的影像,從多個草圖中開發出的人臉影像,將影像從一個領域轉換到另一個領域,增強影像,將一幅影像與另一幅影像的風格結合,改變人臉影像的外觀以顯示老化過程的效果,從文本生成影像,以及許多其他應用。GAN在生成接近人類在瞬間產生的輸出方面非常有幫助,並且能有效地產生高品質的音樂、語音和影像。