Deep Learning Applications in Medical Image Segmentation: Overview, Approaches, and Challenges
暫譯: 醫學影像分割中的深度學習應用:概述、方法與挑戰
Bhat, Sajid Yousuf, Rehman, Aasia, Abulaish, Muhammad
- 出版商: Wiley
- 出版日期: 2025-01-29
- 售價: $5,240
- 貴賓價: 9.5 折 $4,978
- 語言: 英文
- 頁數: 320
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1394245335
- ISBN-13: 9781394245338
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Apply revolutionary deep learning technology to the fast-growing field of medical image segmentation
Precise medical image segmentation is rapidly becoming one of the most important tools in medical research, diagnosis, and treatment. The potential for deep learning, a technology which is already revolutionizing practice across hundreds of subfields to impact medical image segmentation, is immense. The prospect of using deep learning to address the traditional shortcomings of image segmentation demands close inspection and wide proliferation of relevant knowledge.
Deep Learning Applications in Medical Image Segmentation meets this demand with a comprehensive introduction to this technology and its growing applications. Covering both the foundational concepts of the technology and its advanced techniques, it offers a one-stop resource for researchers and other readers looking for a detailed understanding of the topic. It's deeply engaged with the main challenges and recent advances in the field of deep-learning-based medical image segmentation.
Readers will also find:
- Analysis of different deep learning models, including FCN, UNet, SegNet, Dee Lab, and many more
- Detailed discussion of medical image segmentation divided by area, incorporating all major organs and organ systems
- Recent deep learning advancements in segmenting brain tumors, retinal vessels, and inner ear structures
- Analyzes the effectiveness of deep learning models in segmenting lung fields for respiratory disease diagnosis
- Explores the application and benefits of Generative Adversarial Networks (GANs) in enhancing medical image segmentation
- Identifies and discusses the key challenges faced in medical image segmentation using deep learning techniques
- Provides an overview of the latest advancements, applications, and future trends in deep learning for medical image analysis
Deep Learning Applications in Medical Image Segmentation is ideal for academics and researchers working with medical image segmentation, as well as professionals in medical imaging, data science, and biomedical engineering.
商品描述(中文翻譯)
將革命性的深度學習技術應用於快速成長的醫學影像分割領域
精確的醫學影像分割正迅速成為醫學研究、診斷和治療中最重要的工具之一。深度學習這項技術已經在數百個子領域中引發革命,對醫學影像分割的影響潛力巨大。利用深度學習來解決影像分割的傳統缺陷的前景需要仔細檢視並廣泛傳播相關知識。
深度學習在醫學影像分割中的應用 滿足了這一需求,全面介紹了這項技術及其日益增長的應用。該書涵蓋了技術的基礎概念和先進技術,為尋求深入理解該主題的研究人員和其他讀者提供了一站式資源。它深入探討了基於深度學習的醫學影像分割領域的主要挑戰和最新進展。
讀者還將發現:
- 對不同深度學習模型的分析,包括 FCN、UNet、SegNet、Dee Lab 等等
- 按區域劃分的醫學影像分割的詳細討論,涵蓋所有主要器官和器官系統
- 在腦腫瘤、視網膜血管和內耳結構分割方面的最新深度學習進展
- 分析深度學習模型在肺部影像分割中對呼吸疾病診斷的有效性
- 探討生成對抗網絡 (GANs) 在增強醫學影像分割中的應用和好處
- 識別並討論使用深度學習技術進行醫學影像分割所面臨的主要挑戰
- 提供深度學習在醫學影像分析中的最新進展、應用和未來趨勢的概述
深度學習在醫學影像分割中的應用 非常適合從事醫學影像分割的學術界和研究人員,以及醫學影像、數據科學和生物醫學工程領域的專業人士。
作者簡介
Sajid Yousuf Bhat, PhD, is an Assistant Professor in the Department of Computer Science, University of Kashmir, Srinagar, India. Dr. Bhat received his PhD in Computer Science from Jamia Millia Islamia, India, in 2014. His current areas of research include image analysis, machine learning, network analysis and business intelligence.
Aasia Rehman, PhD, is a Lecturer in the Department of Computer Science, University of Kashmir, -Srinagar, India. Dr. Rehman earned her PhD in Computer Science from the University of Kashmir, India, in 2023. Her current research area includes medical image segmentation, image classification and deep learning.
Muhammad Abulaish, PhD, is a Professor in the Department of Computer Science, South Asian University, New Delhi, India. Professor Abulaish earned his PhD in Computer Science from the Indian Institute of Technology Delhi, India, in 2007. His research focuses on the development of innovative data mining, machine learning, and network analysis techniques to address real-world societal and industrial problems.
作者簡介(中文翻譯)
Sajid Yousuf Bhat, PhD, 是印度斯利那加喀什米爾大學計算機科學系的助理教授。Bhat 博士於 2014 年在印度 Jamia Millia Islamia 獲得計算機科學博士學位。他目前的研究領域包括圖像分析、機器學習、網絡分析和商業智能。
Aasia Rehman, PhD, 是印度斯利那加喀什米爾大學計算機科學系的講師。Rehman 博士於 2023 年在印度喀什米爾大學獲得計算機科學博士學位。她目前的研究領域包括醫學圖像分割、圖像分類和深度學習。
Muhammad Abulaish, PhD, 是印度新德里南亞大學計算機科學系的教授。Abulaish 教授於 2007 年在印度德里印度理工學院獲得計算機科學博士學位。他的研究專注於開發創新的數據挖掘、機器學習和網絡分析技術,以解決現實世界的社會和工業問題。