Executing Data Quality Projects: Ten Steps to Quality Data and Trusted Information (TM) 2nd Edition
暫譯: 執行數據質量專案:十個步驟達成高品質數據與可信資訊 (TM) 第二版

McGilvray, Danette

商品描述

Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization.

Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work - with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations.

The Ten Steps approach applies to all types of data and all types of organizations - for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action.

This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all.

The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before.

商品描述(中文翻譯)

《執行數據品質專案,第二版》提供了一種結構化但靈活的方法,用於創建、改善、維持和管理任何組織內部的數據和信息品質。

研究顯示,數據品質問題每年使企業損失數十億美元,劣質數據與浪費和低效率、客戶和供應商之間的信譽損害,以及組織無法做出明智決策有關。本書提供了一種經過驗證的十步驟方法,結合了理解信息品質的概念框架以及實際應用該方法的技術、工具和指導,最終目的是獲得高品質的可信數據和信息,這對於當今依賴數據的組織至關重要。

十步驟方法適用於所有類型的數據和所有類型的組織——包括任何行業的營利性組織、非營利組織、政府、教育、醫療保健、科學、研究和醫學。本書包含了大量模板、詳細範例和執行每一步的實用建議。同時,讀者將獲得如何選擇相關步驟並以不同方式應用它們的建議,以最佳方式應對他們將面臨的各種情況。書中的佈局便於快速參考,使用易於操作的格式突顯關鍵概念和定義、重要檢查點、溝通活動、最佳實踐和警告。實際客戶和十步驟使用者的經驗提供了步驟輸出的真實範例,並附有名為「十步驟實踐」的側邊案例研究。

本書將專案作為數據品質工作的載體,廣義上包括:1) 專注於數據品質改善的專案,例如改善供應鏈管理中使用的數據;2) 在其他專案中的數據品質活動,例如構建新應用程序和從舊系統遷移數據、因併購而整合數據,或因組織分拆而理順數據;3) 在日常工作中臨時使用數據品質步驟、技術或活動。十步驟方法也可以用來豐富組織的標準SDLC(無論是順序式還是敏捷式),並且它補充了六西格瑪或精益等一般改進方法論。沒有兩個數據品質專案是相同的,但十步驟的靈活性意味著該方法論可以應用於所有專案。

新版本的第二版突出了人工智慧和機器學習、物聯網、安全和隱私、分析、法律和監管要求、數據科學、大數據、數據湖和雲計算等主題,以顯示它們對數據和信息的依賴,以及為什麼數據品質現在比以往任何時候都更相關和關鍵。