Network Recovery: Protection and Restoration of Optical, SONET-SDH, IP, and MPLS (Hardcover)

Jean-Philippe Vasseur M.S. in Computer Science, Mario Pickavet, Piet Demeester

  • 出版商: Morgan Kaufmann
  • 出版日期: 2004-07-20
  • 售價: $1,127
  • 語言: 英文
  • 頁數: 544
  • 裝訂: Hardcover
  • ISBN: 012715051X
  • ISBN-13: 9780127150512
  • 下單後立即進貨 (約5~7天)

買這商品的人也買了...

相關主題

商品描述

Description:

Network Recovery is the first book to provide detailed information on protecting and restoring communication networks, and it sets a sky-high standard for any that may follow. Inside, you’ll learn specific techniques that work at each layer of the networking hierarchy—including optical, SONET-SDH, IP, and MPLS—as well as multi-layer escalation strategies that offer the highest level of protection. The authors begin with an incisive introduction to the issues that define the field of network protection and restoration, and as the book progresses they explain everything you need to know about the relevant protocols, providing theoretical analyses wherever appropriate. If you work for a network-dependent organization, large or small, you’ll want to keep Network Recovery within reach at all times.

 

Table of Contents:

Chapter 1: Introduction

1.1 Communications networks today
1.1.1 Fundamental networking concepts
1.1.2 Layered network representation
1.1.3 Network planes
1.2 Network reliability
1.2.1 Definitions
1.2.2 Which failures can occur?
1.2.3 Reliability requirements for various users and services
1.2.4 Measures to increase reliability
1.3 Different phases in a recovery process
1.3.1 Recovery cycle
1.3.2 Reversion cycle
1.4 Performance of recovery mechanisms: criteria
1.4.1 Scope of failure coverage
1.4.2 Recovery time
1.4.3 Backup capacity requirements
1.4.4 Guaranteed bandwidth
1.4.5 Reordering and duplication
1.4.6 Additive latency and jitter
1.4.7 State overhead
1.4.8 Scalability
1.4.9 Signaling requirements
1.4.10 Stability
1.4.11 Notion of recovery class
1.5 Classification of single-layer recovery mechanisms
1.5.1 Backup capacity: dedicated versus shared
1.5.2 Recovery paths: pre-planned versus dynamic
1.5.3 Protection versus restoration
1.5.4 Global versus local recovery
1.5.5 Control of recovery mechanisms
1.5.6 Ring networks versus mesh networks
1.5.7 Connection-oriented versus connectionless
1.5.8 Revertive versus non-revertive mode
1.6 Multi-layer recovery
1.7 Conclusion

Chapter 2: SONET-SDH

2.1 Introduction: transmission networks
2.1.1 Transmission Networks
2.1.2 Management of (Transmission) Networks
2.1.3 Structuring/Modeling Transmission Networks
2.1.4 Summarizing conclusions
2.2 SDH and SONET Networks
2.2.1 Introduction
2.2.2 Structure of SDH networks
2.2.3 SDH frame structure: overhead bytes relevant for network recovery
2.2.4 SDH Network Elements
2.2.5 Summarizing conclusion
2.2.6 Differences between SONET/SDH
2.3 Operational aspects
2.3.1 Fault management processes
2.3.2 Fault detection and propagation inside a network element
2.3.3 Fault propagation and notification on a network level
2.3.4 Automatic Protection Switching (APS) protocol
2.4 Ring protection
2.4.1 Multiplex Section Shared Protection Ring (MS-SP Ring)
2.4.2 Multiplex Section Dedicated Protection Ring (MS-DP Ring)
2.4.3 Sub-Network Connection Protection Ring (SNCP Ring)
2.4.4 Ring Interconnection
2.4.5 Summarizing conclusions
2.4.6 Difference between Sonet and SDH
2.5 Linear Protection
2.5.1 Multiplex Section Protection (MSP)
2.5.2 Path protection
2.5.3 Summarizing conclusions
2.6 Restoration
2.6.1 Protection versus restoration
2.6.2 Summarizing conclusions
2.7 Case study
2.7.1 Assumptions: network scenario, node configurations, and protection strategies
2.7.3 Proposed network design and evaluation process
2.7.4 Cost comparison for different protection strategies
2.7.5 Summarizing conclusions
2.8 Summary
2.9 Recommended reference work and research-related topics

Chapter 3: Optical Networks

3.1 Evolution of the optical network layer
3.1.1 Wavelength Division Multiplexing in the point-to-point optical network layer
3.1.2 An optical networking layer with optical nodes
3.1.3 An optical network layer organized in rings
3.1.4 Meshed optical networks
3.1.5 Adding flexibility to the optical network layer
3.2. The Optical Transport Network
3.2.1 Architectural aspects and structure of the optical transport network
3.2.2 Structure of the Optical Transport Module
3.2.3 Overview of the standardization work on the Optical Transport Network
3.3 Fault detection and propagation
3.3.1 The optical network overhead
3.3.2 Defects in the optical transport network
3.3.3 OTN maintenance signals and alarm suppression
3.4 Recovery in optical networks
3.4.1 Recovery at the optical layer?
3.4.2 Standardization work on recovery in the optical transport network
3.4.3 Shared Risk Group
3.5 Recovery mechanisms in ring-based optical networks
3.5.1 Multiplex Section Protection in ring-based optical networks
3.5.2 Optical channel protection in ring-based optical networks
3.5.3 OMS versus OCh based approach
3.5.4 Shared versus dedicated approach
3.5.5 Interconnection of rings
3.6 Recovery mechanisms in mesh-based optical networks
3.6.1 Protection versus restoration
3.7 Ring-based versus mesh-based recovery schemes
3.8 Availability
3.8.1 Availability calculations
3.8.2 Availability: some observations
3.9 Som recent trends in research
3.9.1 p-cycles
3.9.2 Meta-mesh recovery technique
3.9.3 Flexible optical networks
3.10 Summary

Chapter 4: IP Routing

4.1 IP routing protocols
4.1.1 Introduction
4.1.2 Distance vector routing protocol overview
4.1.3 Link State routing protocol overview
4.1.4 IP routing: a local versus global restoration mechanism?
4.2 Analysis of the IP recovery cycle
4.2.1 Fault detection and characterization
4.2.2 Hold-off timer
4.2.3 Fault notification time
4.2.4 Computation of the routing table
4.2.5 An example of IP rerouting upon link failure
4.3 Failure profile and fault detection
4.3.1 Failure profiles
4.3.2 Failure detection
4.3.3 Failure characterization
4.3.4 Analysis of the various failure types and their impact on traffic
4.4 Dampening algorithms
4.5 FIS propagation (LSA origination and flooding)
4.5.1 LSA origination process
4.5.2 LSA flooding process
4.5.3 Time estimate for the LSA origination and flooding process
4.6 Route computation
4.6.1 Shortest path computation
4.6.2 The Dijkstra algorithm
4.6.3 Shortest path computation triggers
4.6.4 Routing Information Base (RIB) update
4.7 Temporary loops during network states changes
4.7.1 Temporary loops in the case of a node or a link failure
4.7.2 Temporary loops caused by a restored network element
4.8 Load balancing
4.9 QOS guarantees during failure
4.10 Non Stop Forwarding: an example with OSPF
4.11 A case study with IS-IS
4.12 Summary
4.13 Algorithm complexity
4.14 Incremental SPF
4.15 Interaction between fast IGP convergence and NSF
4.16 Research related topics

Chapter 5: MPLS Traffic Engineering

5.1 MPLS Traffic Engineering refresher
5.1.1 Traffic Engineering in data networks
5.1.2 Terminology
5.1.3 MPLS Traffic Engineering components
5.1.4 Notion of preemption in MPLS Traffic Engineering
5.1.5 Motivations for deploying MPLS Traffic Engineering
5.2. Analysis of the recovery cycle
5.2.1 Fault detection time
5.2.2 Hold-off timer
5.2.3 Fault notification time
5.2.4 Recovery operation time
5.2.5 Traffic recovery time
5.3. MPLS Traffic Engineering global default restoration
5.3.1 Fault Signal Indication
5.3.2 Mode of Operation
5.3.3 Recovery Time
5.4 MPLS Traffic engineering global path protection
5.4.1 Mode of operation
5.4.2 Recovery time
5.5 MPLS Traffic Engineering local protection
5.5.1 Terminology
5.5.2 Principles of local protection recovery techniques
5.5.3 Local Protection-"One to one backup"
5.5.4 Local Protection-"Facility backup"
5.5.5 Properties of a Traffic Engineering LSP
5.5.6 Notification of "Tunnel locally repaired"
5.5.7 Signaling extensions for MPLS Traffic Engineering local protection
5.5.8 Two strategies for deploying MPLS Traffic Engineering for fast recovery
5.6. Another MPLS Traffic Engineering recovery alternative
5.7. Load balancing
5.8 Comparison of global protection and local protection
5.8.1 Recovery time
5.8.2 Scalability
5.8.3 Bandwidth sharing capability
5.8.4 Summary
5.9 Revertive versus non revertive modes
5.9.1 MPLS Traffic Engineering default global restoration
5.9.2 MPLS Traffic Engineering global path protection
5.9.3 MPLS Traffic Engineering Local protection
5.10 Failure profiles and fault detection
5.10.1 MPLS-specific failure detection hello based protocol
5.10.2 Requirements for an accurate failure type characterization
5.10.3 Analysis of the various failure types and their impact on traffic forwarding
5.11 Case Studies
5.11.1 Case Study 1
5.11.2 Case Study 2
5.11.3 Case Study 3
5.12 Standardization
5.13 Summary
5.14 RSVP signaling extensions for MPLS TE local protection
5.14.1 SESSION-ATTRIBUTE object
5.14.2 FAST REROUTE object
5.14.3 DETOUR object
5.14.4 Route Record Object (RRO)
5.14.5 Signaling a protected Traffic Engineering LSP with a set of constraints
5.14.6 Identification of a signaled TE LSP
5.14.7 Signaling with Facility backup
5.14.8 Signaling with one-to-one backup
5.14.9 Detour merging
5.15 Backup path computation
5.15.1 Introduction
5.15.2 Requirements for strict QoS guarantees during failure
5.15.3 Network design considerations
5.15.4 Notion of bandwidth sharing between backup paths
5.15.5 Backup path computation – MPLS TE global path protection
5.15.6 Backup path computation – MPLS TE Fast Reroute Facility Backup
5.15.7 Backup tunnel path computation with MPLS TE Fast Reroute One-to-One Backup
5.15.8 Summary
5.16 Research related topics

Chapter 6 Multi-Layer Networks

6.1 ASON / GMPLS networks
6.1.1 The ASON/ASTN framework
6.1.2 Protocols for implementing a distributed control plane
6.1.3 Overview of control plane architectures (overlay, peer, augmented)
6.2 Generic multi-layer recovery approaches
6.2.1 Why multi-layer recovery?
6.2.2 Single-layer recovery schemes in multi-layer networks
6.2.3 Static multi-layer recovery schemes
6.2.4 Dynamic multi-layer recovery
6.2.5 Summary
6.3 Case studies
6.3.1 Case study 1: Optical restoration and MPLS Traffic Engineering Fast Reroute
6.3.2 Case study 2: SONET-SDH protection and IP routing
6.3.3 Case study 3: MPLS Traffic Engineering Fast Reroute (Link Protection) and IP Rerouting Fast convergence
6.4 Conclusion
6.5 References

商品描述(中文翻譯)

描述:
《Network Recovery》是第一本提供有關保護和恢復通信網絡的詳細資訊的書籍,為後續的作品樹立了極高的標準。在書中,您將學習到在網絡層次結構的每一層(包括光纖、SONET-SDH、IP 和 MPLS)中有效的具體技術,以及提供最高保護級別的多層升級策略。作者首先對定義網絡保護和恢復領域的問題進行了深刻的介紹,隨著書籍的進展,他們解釋了您需要了解的所有相關協議,並在適當的地方提供理論分析。如果您在一家依賴網絡的組織工作,不論大小,您都會希望隨時能夠接觸到《Network Recovery》。

目錄:
第一章:介紹
1.1 當今的通信網絡
1.1.1 基本網絡概念
1.1.2 分層網絡表示
1.1.3 網絡平面
1.2 網絡可靠性
1.2.1 定義
1.2.2 可能發生的故障?
1.2.3 各種用戶和服務的可靠性要求
1.2.4 提高可靠性的措施
1.3 恢復過程中的不同階段
1.3.1 恢復週期
1.3.2 反轉週期
1.4 恢復機制的性能:標準
1.4.1 故障覆蓋範圍
1.4.2 恢復時間
1.4.3 備份容量要求
1.4.4 保證帶寬
1.4.5 重新排序和重複
1.4.6 附加延遲和抖動
1.4.7 狀態開銷
1.4.8 可擴展性
1.4.9 信號要求
1.4.10 穩定性
1.4.11 恢復類別的概念
1.5 單層恢復機制的分類
1.5.1 備份容量:專用與共享
1.5.2 恢復路徑:預先規劃與動態
1.5.3 保護與恢復
1.5.4 全球與本地恢復
1.5.5 恢復機制的控制
1.5.6 環形網絡與網狀網絡
1.5.7 連接導向與無連接
1.5.8 反轉模式與非反轉模式
1.6 多層恢復
1.7 結論

第二章:SONET-SDH
2.1 介紹:傳輸網絡
2.1.1 傳輸網絡
2.1.2 (傳輸)網絡的管理
2.1.3 結構化/建模傳輸網絡
2.1.4 總結結論
2.2 SDH 和 SONET 網絡
2.2.1 介紹
2.2.2 SDH 網絡的結構
2.2.3 SDH 幀結構:與網絡恢復相關的開銷位元組
2.2.4 SDH 網絡元素
2.2.5 總結結論
2.2.6 SONET/SDH 之間的差異
2.3 操作方面
2.3.1 故障管理過程
2.3.2 網絡元素內的故障檢測和傳播
2.3.3 網絡層級的故障傳播和通知
2.3.4 自動保護切換(APS)協議
2.4 環形保護
2.4.1 多路復用段共享保護環(MS-SP 環)
2.4.2 多路復用段專用保護環(MS-DP 環)
2.4.3 子網連接保護環(SNCP 環)
2.4.4 環形互連
2.4.5 總結結論
2.4.6 SONET 和 SDH 之間的差異
2.5 線性保護
2.5.1 多路復用段保護(MSP)
2.5.2 路徑保護
2.5.3 總結結論
2.6 恢復