Probabilistic Methods for Bioinformatics: With an Introduction to Bayesian Networks (Hardcover)
暫譯: 生物資訊學的機率方法:貝葉斯網路入門
Richard E. Neapolitan
- 出版商: Morgan Kaufmann
- 出版日期: 2009-04-01
- 定價: $2,600
- 售價: 8.0 折 $2,080
- 語言: 英文
- 頁數: 424
- 裝訂: Hardcover
- ISBN: 0123704766
- ISBN-13: 9780123704764
-
相關分類:
機率統計學 Probability-and-statistics、生物資訊 Bioinformatics
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,107Bioinformatics: The Machine Learning Approach, 2/e (Hardcover)
-
$1,930$1,834 -
$880$695 -
$990$891 -
$980$774 -
$620$527 -
$380$323 -
$680$537 -
$780$616 -
$680$537 -
$780$663 -
$1,380$1,311 -
$750$638 -
$520$442 -
$520$442 -
$550$468 -
$500$395 -
$520$411 -
$820$648 -
$580$458 -
$890$757 -
$490$387 -
$490$417 -
$490$382 -
$520$411
相關主題
商品描述
The Bayesian network is one of the most important architectures for representing and reasoning with multivariate probability distributions. When used in conjunction with specialized informatics, possibilities of real-world applications are achieved. Probabilistic Methods for BioInformatics explains the application of probability and statistics, in particular Bayesian networks, to genetics. This book provides background material on probability, statistics, and genetics, and then moves on to discuss Bayesian networks and applications to bioinformatics.
Rather than getting bogged down in proofs and algorithms, probabilistic methods used for biological information and Bayesian networks are explained in an accessible way using applications and case studies. The many useful applications of Bayesian networks that have been developed in the past 10 years are discussed. Forming a review of all the significant work in the field that will arguably become the most prevalent method in biological data analysis.
- Unique coverage of probabilistic reasoning methods applied to bioinformatics data--those methods that are likely to become the standard analysis tools for bioinformatics.
- Shares insights about when and why probabilistic methods can and cannot be used effectively;
- Complete review of Bayesian networks and probabilistic methods with a practical approach.
商品描述(中文翻譯)
貝葉斯網路是表示和推理多變量機率分佈的最重要架構之一。當與專門的資訊學結合使用時,能夠實現現實世界應用的可能性。《生物資訊學的機率方法》解釋了機率和統計的應用,特別是貝葉斯網路在遺傳學中的應用。本書提供了有關機率、統計和遺傳學的背景資料,然後討論貝葉斯網路及其在生物資訊學中的應用。
本書並未陷入證明和演算法的繁瑣,而是以易於理解的方式解釋了用於生物資訊的機率方法和貝葉斯網路,並使用應用案例進行說明。討論了過去十年中發展出的許多有用的貝葉斯網路應用,形成了對該領域所有重要工作的回顧,這些工作無疑將成為生物數據分析中最普遍的方法。
- 獨特涵蓋應用於生物資訊數據的機率推理方法——這些方法可能成為生物資訊學的標準分析工具。
- 分享了何時以及為何機率方法能夠或無法有效使用的見解;
- 對貝葉斯網路和機率方法進行了全面的回顧,並採取實用的方式。